|
|
A097804
|
|
a(n) = 3*(2*5^n + 1).
|
|
1
|
|
|
9, 33, 153, 753, 3753, 18753, 93753, 468753, 2343753, 11718753, 58593753, 292968753, 1464843753, 7324218753, 36621093753, 183105468753, 915527343753, 4577636718753, 22888183593753, 114440917968753, 572204589843753, 2861022949218753, 14305114746093753
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6, -5).
|
|
FORMULA
|
a(0)=9, a(1)=33, a(n) = 6*a(n-1) - 5*a(n-2) for n > 1. - Harvey P. Dale, Dec 17 2012
G.f.: 3*(3-7*x)/((1-x)*(1-5*x)). - Wesley Ivan Hurt, Aug 16 2016
|
|
MAPLE
|
A097804:=n->3*(2*5^n+1): seq(A097804(n), n=0..30); # Wesley Ivan Hurt, Aug 16 2016
|
|
MATHEMATICA
|
Table[3(2*5^n + 1), {n, 0, 20}] (* Robert G. Wilson v, Aug 26 2004 *)
LinearRecurrence[{6, -5}, {9, 33}, 30] (* Harvey P. Dale, Dec 17 2012 *)
6*5^Range[0, 30] + 3 (* Wesley Ivan Hurt, Aug 16 2016 *)
|
|
PROG
|
(MAGMA) [3*(2*5^n+1) : n in [0..30]]; // Wesley Ivan Hurt, Aug 16 2016
|
|
CROSSREFS
|
Cf. A097802, A097803.
Sequence in context: A257744 A147275 A140413 * A146136 A264258 A147444
Adjacent sequences: A097801 A097802 A097803 * A097805 A097806 A097807
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
George E. Antoniou (george.antoniou(AT)montclair.edu), Aug 25 2004
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v and Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 26 2004
|
|
STATUS
|
approved
|
|
|
|