login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078366 A Chebyshev S-sequence with Diophantine property. 7
1, 17, 288, 4879, 82655, 1400256, 23721697, 401868593, 6808044384, 115334885935, 1953885016511, 33100710394752, 560758191694273, 9499788548407889, 160935647131239840, 2726406212682669391 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 285*a^2 = +4 with companion sequence b(n)=A078367(n+1), n>=0.

This is the m=19 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..18 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364 and A077412. The m=1..3 (signed) sequences are A049347, A056594, A010892.

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 17's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,16}. - Milan Janjic, Jan 23 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..800

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=17, q=-1.

Tanya Khovanova, Recursive Sequences

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=19.

Index entries for sequences related to Chebyshev polynomials.

Index to sequences with linear recurrences with constant coefficients, signature (17,-1).

FORMULA

a(n) = 17*a(n-1) - a(n-2), n >= 1; a(-1)=0, a(0)=1.

a(n) = S(2*n+1, sqrt(19))/sqrt(19) = S(n, 17); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.

a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (17+sqrt(285))/2 and am = (17-sqrt(285))/2.

G.f.: 1/(1-17*x+x^2).

a(n) = Sum_{k=0..n} A101950(n,k)*16^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/15*(15 + sqrt(285)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 1/34*(15 + sqrt(285)). - Peter Bala, Dec 23 2012

For n>=1, a(n) = U(n-1,13/2), where U(k,x) represents Chebyshev polynomial of the second order. - Milan Janjic, Jan 23 2015

MATHEMATICA

Join[{a=1, b=17}, Table[c=17*b-a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011* )

CoefficientList[Series[1/(1 - 17 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 24 2012 *)

PROG

(Sage) [lucas_number1(n, 17, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Jun 25 2008

(MAGMA) I:=[1, 17, 288]; [n le 3 select I[n] else 17*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012

CROSSREFS

a(n) = sqrt((A078367(n+1)^2 - 4)/285), n>=0, (Pell equation d=285, +4).

Cf. A077428, A078355 (Pell +4 equations).

Sequence in context: A196743 A196901 A171322 * A045607 A045606 A171291

Adjacent sequences:  A078363 A078364 A078365 * A078367 A078368 A078369

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 22 04:36 EDT 2015. Contains 257722 sequences.