login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078362 A Chebyshev S-sequence with Diophantine property. 9
1, 13, 168, 2171, 28055, 362544, 4685017, 60542677, 782369784, 10110264515, 130651068911, 1688353631328, 21817946138353, 281944946167261, 3643466354036040, 47083117656301259, 608437063177880327 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 165*a^2 =+4 with companion sequence b(n)=A078363(n+1), n>=0.

This is the m=15 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..14 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190 and A004191. The m=1..3 (signed) sequences are A049347, A056594, A010892.

For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 13's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

REFERENCES

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=13, q=-1.

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eq.(44), lhs, m=15.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..800

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for sequences related to linear recurrences with constant coefficients

Index to sequences with linear recurrences with constant coefficients, signature (13,-1).

FORMULA

a(n)=13*a(n-1)-a(n-2), n>= 1; a(-1)=0, a(0)=1.

a(n)=S(2*n+1, sqrt(15))/sqrt(15) = S(n, 13); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.

a(n)=(ap^(n+1)-am^(n+1))/(ap-am) with ap := (13+sqrt(165))/2 and am := (13-sqrt(165))/2.

G.f.: 1/(1-13*x+x^2).

a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*12^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/11*(11 + sqrt(165)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 1/26*(11 + sqrt(165)). - Peter Bala, Dec 23 2012

MATHEMATICA

Join[{a=1, b=13}, Table[c=13*b-a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011*)

CoefficientList[Series[1/(1 - 13 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 24 2012 *)

PROG

(Sage) [lucas_number1(n, 13, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Jun 25 2008

(MAGMA) I:=[1, 13, 168]; [n le 3 select I[n] else 13*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012

CROSSREFS

a(n)=sqrt((A078363(n+1)^2 - 4)/165), n>=0, (Pell equation d=165, +4).

Sequence in context: A012828 A119539 A171318 * A157381 A084970 A209226

Adjacent sequences:  A078359 A078360 A078361 * A078363 A078364 A078365

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 31 04:27 EDT 2014. Contains 246235 sequences.