login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078362 A Chebyshev S-sequence with Diophantine property. 9
1, 13, 168, 2171, 28055, 362544, 4685017, 60542677, 782369784, 10110264515, 130651068911, 1688353631328, 21817946138353, 281944946167261, 3643466354036040, 47083117656301259, 608437063177880327 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 165*a^2 = +4 with companion sequence b(n)=A078363(n+1), n>=0.

This is the m=15 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..14 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190 and A004191. The m=1..3 (signed) sequences are A049347, A056594, A010892.

For positive n, a(n) equals the permanent of the tridiagonal matrix of order n with 13's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,12}. - Milan Janjic, Jan 23 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..800

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=13, q=-1.

M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, 2014; http://matinf.pmfbl.org/wp-content/uploads/2015/01/za-arhiv-18.-1.pdf

Tanya Khovanova, Recursive Sequences

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=15.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (13,-1).

FORMULA

a(n) = 13*a(n-1) - a(n-2), n>=1; a(-1)=0, a(0)=1.

a(n) = S(2*n+1, sqrt(15))/sqrt(15) = S(n, 13); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.

a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (13+sqrt(165))/2 and am = (13-sqrt(165))/2.

G.f.: 1/(1 - 13*x + x^2).

a(n) = Sum_{k=0..n} A101950(n,k)*12^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/11*(11 + sqrt(165)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 1/26*(11 + sqrt(165)). - Peter Bala, Dec 23 2012

For n>=1, a(n) = U(n-1,13/2), where U(k,x) represents Chebyshev polynomial of the second order.

MATHEMATICA

Join[{a=1, b=13}, Table[c=13*b-a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011*)

CoefficientList[Series[1/(1 - 13 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 24 2012 *)

PROG

(Sage) [lucas_number1(n, 13, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Jun 25 2008

(MAGMA) I:=[1, 13, 168]; [n le 3 select I[n] else 13*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012

CROSSREFS

a(n) = sqrt((A078363(n+1)^2 - 4)/165), n>=0, (Pell equation d=165, +4).

Sequence in context: A119539 A277412 A171318 * A157381 A084970 A209226

Adjacent sequences:  A078359 A078360 A078361 * A078363 A078364 A078365

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 13:07 EST 2016. Contains 278875 sequences.