login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078368 A Chebyshev S-sequence with Diophantine property. 4
1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 357*a^2 =+4 with companion sequence b(n)=A078369(n+1), n>=0.

This is the m=21 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..20 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366 and A049660. The m=1..3 (signed) sequences are A049347, A056594, A010892.

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 19's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011

For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,18}. Milan Janjic, Jan 25 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=19, q=-1.

Tanya Khovanova, Recursive Sequences

W. Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=21.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (19,-1).

FORMULA

a(n) = 19*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.

a(n) = (ap^(n+1)-am^(n+1))/(ap-am) with ap = (19+sqrt(357))/2 and am = (19-sqrt(357))/2.

a(n) = S(2*n+1, sqrt(21))/sqrt(21) = S(n, 19); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.

G.f.: 1/(1-19*x+x^2).

a(n) = Sum_{k=0..n} A101950(n,k)*18^k. - Philippe Deléham, Feb 10 2012

Product {n >= 0} (1 + 1/a(n)) = 1/17*(17 + sqrt(357)). - Peter Bala, Dec 23 2012

Product {n >= 1} (1 - 1/a(n)) = 1/38*(17 + sqrt(357)). - Peter Bala, Dec 23 2012

MATHEMATICA

Join[{a=1, b=19}, Table[c=19*b-a; a=b; b=c, {n, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011 *)

PROG

(Sage) [lucas_number1(n, 19, 1) for n in xrange(1, 20)] # Zerinvary Lajos, Jun 25 2008

CROSSREFS

a(n) = sqrt((A078369(n+1)^2 - 4)/357), n>=0, (Pell equation d=357, +4).

Cf. A077428, A078355 (Pell +4 equations).

Sequence in context: A282030 A192568 A171324 * A209227 A208504 A207877

Adjacent sequences:  A078365 A078366 A078367 * A078369 A078370 A078371

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Nov 29 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 04:05 EST 2017. Contains 294959 sequences.