This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066888 Number of primes p between triangular numbers T(n) < p <= T(n+1). 12
 0, 2, 1, 1, 2, 2, 1, 2, 3, 2, 2, 3, 3, 3, 3, 2, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 4, 5, 3, 6, 6, 7, 5, 5, 6, 4, 8, 5, 6, 6, 8, 6, 8, 5, 7, 5, 11, 4, 6, 9, 7, 8, 9, 8, 7, 7, 9, 7, 8, 7, 12, 5, 9, 9, 11, 9, 7, 7, 12, 10, 10, 9, 9, 9, 6, 11, 10, 11, 9, 12, 11, 12, 9, 10, 11, 12, 10, 13, 9, 11, 10, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS It is conjectured that for n > 0, a(n) > 0. See also A190661. [John W. Nicholson, May 18 2011] If the above conjecture is true, then for any k>1 there is a prime p>k such that p<=(n+1)(n+2)/2, where n=floor(sqrt(2k)+1/2). Ignoring the floor function we can obtain a looser (but nicer) lower bound of p<=1+k+2sqrt(2k). - Dmitry Kamenetsky, Nov 26 2016 LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 FORMULA a(n) = pi(n*(n+1)/2)-pi(n*(n-1)/2). a(n) equals the number of occurrences of n+1 in A057062. [Esko Ranta, Jul 29 2011] EXAMPLE Write the numbers 1, 2, ... in a triangle with n terms in the n-th row; a(n) = number of primes in n-th row. Triangle begins    1              (0 primes)    2  3           (2 primes)    4  5  6        (1 prime)    7  8  9 10     (1 prime)   11 12 13 14 15  (2 primes) MATHEMATICA Table[PrimePi[(n^2 + n)/2] - PrimePi[(n^2 - n)/2], {n, 96}] (* Alonso del Arte, Sep 03 2011 *) PrimePi[#[]]-PrimePi[#[]]&/@Partition[Accumulate[Range[0, 100]], 2, 1] (* Harvey P. Dale, Jun 04 2019 *) PROG (PARI) { tp(m)=local(r, t); r=1; for(n=1, m, t=0; for(k=r, n+r-1, if(isprime(k), t++)); print1(t", "); r=n+r; ) } (PARI) {tpf(m)=local(r, t); r=1; for(n=1, m, t=0; for(k=r, n+r-1, if(isprime(k), t++); print1(k" ")); print1(" ("t" prime)"); print(); r=n+r; ) } CROSSREFS Cf. A083382. Essentially the same as A065382 and A090970. Cf. A000217, A000040, A014085, A190661. Sequence in context: A025848 A268197 A065382 * A029313 A144001 A124233 Adjacent sequences:  A066885 A066886 A066887 * A066889 A066890 A066891 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jun 06 2003 EXTENSIONS More terms from Vladeta Jovovic and Jason Earls, Jun 06 2003 Offset corrected by Daniel Forgues, Sep 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 23 22:20 EDT 2019. Contains 326254 sequences. (Running on oeis4.)