login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066886 Sum of the elements in any transversal of a prime(n) X prime(n) array containing the numbers from 1 to prime(n)^2 in standard order. 4
5, 15, 65, 175, 671, 1105, 2465, 3439, 6095, 12209, 14911, 25345, 34481, 39775, 51935, 74465, 102719, 113521, 150415, 178991, 194545, 246559, 285935, 352529, 456385, 515201, 546415, 612575, 647569, 721505, 1024255, 1124111, 1285745 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n) is the sum of the primes in a prime(n) X prime(n) example of Haga's conjecture (see link below).

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Carlos Rivera, The prime puzzles & problems connection, conjecture 26, The Prime Puzzles and Problems Connection.

FORMULA

a(n) = prime(n)*(prime(n)^2+1)/2, where prime(n) is the n-th prime.

a(n) = A006003(prime(n)). - Michel Marcus, Apr 04 2018

a(n) = A006254(n-1)^4 - A005097(n-1)^4, for n>1. - Dimitris Valianatos, Apr 10 2018

MAPLE

map(t -> t*(t^2+1)/2, [seq(ithprime(i), i=1..100)]); # Robert Israel, Apr 04 2018

MATHEMATICA

a[n_] := Prime[n] (Prime[n]^2 + 1)/2; Table[a[n], {n, 50}]

PROG

(PARI) apply(x->(x*(x^2+1)/2), primes(100)) \\ Michel Marcus, Apr 04 2018

CROSSREFS

Cf. A005097, A006003, A006254, A066883, A066885.

Sequence in context: A149615 A149616 A189945 * A149617 A149618 A149619

Adjacent sequences:  A066883 A066884 A066885 * A066887 A066888 A066889

KEYWORD

easy,nonn

AUTHOR

Enoch Haga, Jan 22 2002

EXTENSIONS

Edited by Dean Hickerson, Jun 08 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 16 02:39 EST 2019. Contains 320140 sequences. (Running on oeis4.)