OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers, 2016.
Michael Somos, Introduction to Ramanujan theta functions, 2019.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of eta(q^2) * eta(q^4) * eta(q^5) * eta(q^10) / (eta(q) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ 1, 0, 1, -1, 0, 0, 1, -1, 1, -2, 1, -1, 1, 0, 0, -1, 1, 0, 1, -2, ...].
Moebius transform is period 20 sequence [ 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 3, 7, 9 (mod 20), a(p^e) = (1 + (-1)^e) / 2 if p == 11, 13, 17, 19 (mod 20).
G.f.: 1 + Sum_{k>0} x^k * (1 + x^(2*k)) * (1 + x^(6*k)) / (1 + x^(10*k)).
a(2*n) = a(5*n) = a(n), a(20*n + 11) = a(20*n + 13) = a(20*n + 17) = a(20*n + 19) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(5) = 1.404962... . - Amiram Eldar, Dec 22 2023
EXAMPLE
G.f. = 1 + q + q^2 + 2*q^3 + q^4 + q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ -20, #] &]]; (* Michael Somos, Jul 09 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q^2] QPochhammer[ q^4] QPochhammer[ q^5] QPochhammer[ q^10] / (QPochhammer[ q] QPochhammer[ q^20]), {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -20, d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) * eta(x^5 + A) * eta(x^10 + A) / eta(x + A) / eta(x^20 + A), n))};
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, Oct 21 2006
STATUS
approved