OFFSET
1,1
COMMENTS
The first 169 terms are primes. Are all terms primes? See links for similar sequences.
Note that g is not the usual "nextprime" function. If the usual nextprime function is used, we get A286296.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..169
Frank Buss, Prime Puzzles - Frank Buss's Conjecture
Frank Buss, The B(n) function
EXAMPLE
a(4) = 5 because Fibonacci(1)*Fibonacci(2)*Fibonacci(3)*Fibonacci(4) = 1*1*2*3 = 6, g(6+2) = 11, and 11 - 6 = 5.
MATHEMATICA
Join[{2, 2}, Drop[NextPrime[#+2]-#&/@FoldList[Times, Fibonacci[ Range[ 60]]], 2]] (* Harvey P. Dale, May 31 2017 *)
PROG
(PARI) { m=1; for (n=1, 1000, m*=fibonacci(n); write("b066889.txt", n, " ", nextprime(m+2) - m) ) } \\ Harry J. Smith, Apr 05 2010
(MuPAD) f := 1:for n from 1 to 100 do f := f*numlib::fibonacci(n):a := nextprime(f+2)-f:print(a) end_for
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank Buss (fb(AT)frank-buss.de), Jan 22 2002
EXTENSIONS
Definition and example corrected by Harvey P. Dale and N. J. A. Sloane, May 31 2017
STATUS
approved