login
A268197
Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with w*(25*w + 24*x + 48*y + 96*z) a square, where w is a positive integer and x,y,z are nonnegative integers.
20
1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 2, 3, 3, 3, 1, 1, 4, 5, 2, 2, 3, 4, 1, 2, 2, 4, 8, 3, 4, 4, 1, 2, 5, 1, 5, 4, 2, 7, 3, 2, 6, 7, 1, 4, 7, 7, 3, 3, 8, 5, 4, 5, 6, 6, 1, 3, 8, 3, 6, 3, 2, 8, 5, 1, 5, 6, 5, 7, 6, 6
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 3, 7, 15, 23, 43, 55, 463, 4^k*m (k = 0,1,2,... and m = 1, 31, 34).
(ii) For each triple (a,b,c) = (1,3,4), (2,3,4), (2,4,6), any positive integer can be written as w^2 + x^2 + y^2 + z^2 with w*(25*w + 24*(a*x+b*y+c*z)) a square, where w is a positive integer and x,y,z are nonnegative integers.
For more refinements of Lagrange's four-square theorem, see arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
EXAMPLE
a(1) = 1 since 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1 > 0 and 1*(25*1 + 24*0 + 48*0 + 96*0) = 5^2.
a(2) = 2 since 2 = 1^2 + 0^2 + 0^2 + 1^2 with 1 > 0 and 1*(25*1 + 24*0 + 48*0 + 96*1) = 11^2, and also 2 = 1^2 + 1^2 + 0^2 + 0^2 with 1 > 0 and 1*(25*1 + 24*1 + 48*0 + 96*0) = 7^2.
a(3) = 1 since 3 = 1^2 + 0^2 + 1^2 + 1^2 with 1 > 0 and 1*(25*1 + 24*0 + 48*1 + 96*1) = 13^2.
a(7) = 1 since 7 = 1^2 + 1^2 + 1^2 + 2^2 with 1 > 0 and 1*(25*1 + 24*1 + 48*1 + 96*2) = 17^2.
a(15) = 1 since 15 = 1^2 + 3^2 + 2^2 + 1^2 with 1 > 0 and 1*(25*1 + 24*3 + 48*2 + 96*1) = 17^2.
a(23) = 1 since 23 = 3^2 + 2^2 + 3^2 + 1^2 with 3 > 0 and 3*(25*3 + 24*2 + 48*3 + 96*1) = 33^2.
a(31) = 1 since 31 = 1^2 + 1^2 + 2^2 + 5^2 with 1 > 0 and 1*(25*1 + 24*1 + 48*2 + 96*5) = 25^2.
a(34) = 1 since 34 = 1^2 + 1^2 + 4^2 + 4^2 with 1 > 0 and 1*(25*1 + 24*1 + 48*4 + 96*4) = 25^2.
a(43) = 1 since 43 = 3^2 + 3^2 + 3^2 + 4^2 with 3 > 0 and 3*(25*3 + 24*3 + 48*3 + 96*4) = 45^2.
a(55) = 1 since 55 = 3^2 + 1^2 + 6^2 + 3^2 with 3 > 0 and 3*(25*3 + 24*1 + 48*6 + 96*3) = 45^2.
a(463) = 1 since 463 = 3^2 + 18^2 + 11^2 + 3^2 with 3 > 0 and 3*(25*3 + 24*18 + 48*11 + 96*3) = 63^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[25x^2+24x(y+2z+4*Sqrt[n-x^2-y^2-z^2])], r=r+1], {x, 1, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {z, 0, Sqrt[n-x^2-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 70}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 04 2016
STATUS
approved