login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054533
Triangular array giving Ramanujan sum T(n,k) = c_n(k) = Sum_{m=1..n, (m,n)=1} exp(2 Pi i m k / n) for n >= 1 and 1 <= k <= n.
24
1, -1, 1, -1, -1, 2, 0, -2, 0, 2, -1, -1, -1, -1, 4, 1, -1, -2, -1, 1, 2, -1, -1, -1, -1, -1, -1, 6, 0, 0, 0, -4, 0, 0, 0, 4, 0, 0, -3, 0, 0, -3, 0, 0, 6, 1, -1, 1, -1, -4, -1, 1, -1, 1, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 0, 2, 0, -2, 0, -4, 0, -2, 0, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12, 1
OFFSET
1,6
COMMENTS
From Wolfdieter Lang, Jan 06 2017: (Start)
Periodicity: c_n(k+n) = c_n(k). See the Apostol reference p. 161.
Multiplicativity: c_n(k)*c_m(k) = c_{n*m}(k), if gcd(n,m) = 1. For the proof see the Hardy reference, p. 138.
Dirichlet g.f. for fixed k: D(n,s) := Sum_{n>=1} c_n(k)/n^s = sigma_{1-s}(k)/zeta(s) = sigma_{s-1}(k)/(k^(s-1)*zeta(s)) for s > 1, with sigma_m(k) the sum of the m-th power of the divisors of k. See the Hardy reference, eqs. (9.6.1) and (9.6.2), pp. 139-140, or Hardy-Wright, Theorem 292, p. 250.
Sum_{n>=1} c_n(k)/n = 0. See the Hardy reference, p. 141. (End)
Right border gives A000010. - Omar E. Pol, May 08 2018
Fredman (1975) proved that the number S(n, k, v) of vectors (a_0, ..., a_{n-1}) of nonnegative integer components that satisfy a_0 + ... + a_{n-1} = k and Sum_{i=0..n-1} i*a_i = v (mod n) is given by S(n, k, v) = (1/(n + k)) * Sum_{d | gcd(n, k)} T(d, v) * binomial((n + k)/d, k/d) = S(k, n, v). This was also proved by Elashvili et al. (1999), who also proved that S(n, k, v) = Sum_{d | gcd(n, k, v)} S(n/d, k/d, 1). Here, S(n, k, 1) = A051168(n + k, k). - Petros Hadjicostas, Jul 09 2019
We have T(n, k) = c_n(k) = Sum_{m=1..n, (m,n)=1} exp(2 Pi i m k / n) and A054532(n, k) = c_k(n) = Sum_{m=1..k, (m,k)=1} exp(2 Pi i m n / k) for n >= 1 and 1 <= k <= n. - Petros Hadjicostas, Jul 27 2019
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 160-161.
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 137-139.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Oxford Science Publications, Clarendon Press, Oxford, 2003, pp. 237-238.
LINKS
Seiichi Manyama, Rows n=1..140 of triangle, flattened (Rows 1..50 from T. D. Noe)
Tom M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41 (1972), 281-293.
Eckford Cohen, A class of arithmetic functions, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944.
A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), 173-188.
M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.
Emiliano Gagliardo, Le funzioni simmetriche semplici delle radici n-esime primitive dell'unità, Bollettino dell'Unione Matematica Italiana Serie 3, 8(3) (1953), 269-273.
Otto Hölder, Zur Theorie der Kreisteilungsgleichung K_m(x)=0, Prace mat.-fiz. 43 (1936), 13-23.
Peter H. van der Kamp, On the Fourier transform of the greatest common divisor, Integers 13 (2013), #A24. [See Section 3 for historical remarks.]
J. C. Kluyver, Some formulae concerning the integers less than n and prime to n, in: KNAW, Proceedings, 9 I, 1906, Amsterdam, 1906, pp. 408-414. [See bottom of p. 410, where the author proves that Sum cos(2*Pi*q*v/n) = mu(n/D) * phi(n) /phi(n/D), where D is the gcd of n and q. The summation is over integers v "less than n and prime to n" (top of p. 408).]
C. A. Nicol, On restricted partitions and a generalization of the Euler phi number and the Moebius function, Proc. Natl. Acad. Sci. USA 39(9) (1953), 963-968.
C. A. Nicol and H. S. Vandiver, A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Natl. Acad. Sci. USA 40(9) (1954), 825-835.
K. G. Ramanathan, Some applications of Ramanujan's trigonometrical sum C_m(n), Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69.
Srinivasa Ramanujan, On certain trigonometric sums and their applications in the theory of numbers, Trans. Camb. Phil. Soc. 22 (1918), 259-276.
R. D. von Sterneck, Ein Analogon zur additiven Zahlentheorie, Sitzungsber. Akad. Wiss. Sapientiae Math.-Naturwiss. Kl. 111 (1902), 1567-1601 (Abt. IIa).
R. D. von Sterneck, Über ein Analogon zur additiven Zahlentheorie, Jahresbericht der Deutschen Mathematiker-Vereinigung 12 (1903), 110-113.
M. V. Subbarao, The Brauer-Rademacher identity, Amer. Math. Monthly 72 (1965), 135-138.
Wikipedia, Ramanujan's sum.
Aurel Wintner, On a statistics of the Ramanujan sums, Amer. J. Math., 64(1) (1942), 106-114.
FORMULA
T(n, k) = Sum_{m=1..n, gcd(m,n) = 1} exp(2*Pi*i*m*k / n), n >= 1, 1 <= k <= n, where i is the imaginary unit.
T(n, k) = Sum_{d | gcd(n,k)} d*Moebius(n/d), n >= 1, 1 <= k <= n.
EXAMPLE
Triangle begins
1;
-1, 1;
-1, -1, 2;
0, -2, 0, 2;
-1, -1, -1, -1, 4;
1, -1, -2, -1, 1, 2;
-1, -1, -1, -1, -1, -1, 6;
0, 0, 0, -4, 0, 0, 0, 4;
0, 0, -3, 0, 0, -3, 0, 0, 6;
1, -1, 1, -1, -4, -1, 1, -1, 1, 4;
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10;
0, 2, 0, -2, 0, -4, 0, -2, 0, 2, 0, 4;
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12;
...
[Edited by Jon E. Schoenfield, Jan 03 2017]
Periodicity and multiplicativity: c_6(k) = c_2(k)*c_3(k), e.g.: 2 = c_6(6) = c_2(6)*c_3(6) = c_2(2)*c_3(3) = 1*2 = 2. - Wolfdieter Lang, Jan 05 2017
MATHEMATICA
c[k_, n_] := Sum[ If[GCD[m, k] == 1, Exp[2 Pi*I*m*n/k], 0], {m, 1, k}]; A054533 = Flatten[ Table[c[n, k] // FullSimplify, {n, 1, 14}, {k, 1, n}] ] (* Jean-François Alcover, Jun 27 2012 *)
(* to get the triangle in the example above *)
FormTable[Table[c[n, k] // FullSimplify, {n, 1, 13}, {k, 1, n}]]
(* Petros Hadjicostas, Jul 28 2019 *)
PROG
(PARI) T(n, k) = sumdiv(gcd(n, k), d, d*moebius(n/d));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(T(n, k), ", "); ); print(); ); }; \\ Michel Marcus, Jun 14 2018
CROSSREFS
KEYWORD
sign,easy,nice,tabl
AUTHOR
N. J. A. Sloane, Apr 09 2000
EXTENSIONS
Name edited by Petros Hadjicostas, Jul 27 2019
STATUS
approved