login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054532
Ramanujan sum T(n, k) = c_k(n) = Sum_{m=1..k, (m,k)=1} exp(2*Pi*i*m*n / k), triangular array read by rows for n >= 1 and 1 <= k <= n.
14
1, 1, 1, 1, -1, 2, 1, 1, -1, 2, 1, -1, -1, 0, 4, 1, 1, 2, -2, -1, 2, 1, -1, -1, 0, -1, 1, 6, 1, 1, -1, 2, -1, -1, -1, 4, 1, -1, 2, 0, -1, -2, -1, 0, 6, 1, 1, -1, -2, 4, -1, -1, 0, 0, 4, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, 10, 1, 1, 2, 2, -1, 2, -1, -4, -3, -1, -1, 4, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, 12, 1
OFFSET
1,6
COMMENTS
T(n, k) = c_k(n) = sum of the n-th powers of the k-th primitive roots of unity. - Petros Hadjicostas, Jul 27 2019
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 160.
LINKS
Tom M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41 (1972), 281-293.
Eckford Cohen, A class of arithmetic functions, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944.
A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), 173-188.
M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.
H. G. Gadiyar and R. Padma, Linking the circle and the sieve: Ramanujan-Fourier series, arXiv:math/0601574 [math.NT], 2006.
Emiliano Gagliardo, Le funzioni simmetriche semplici delle radici n-esime primitive dell'unità, Bollettino dell'Unione Matematica Italiana Serie 3, 8(3) (1953), 269-273.
Otto Hölder, Zur Theorie der Kreisteilungsgleichung K_m(x)=0, Prace mat.-fiz. 43 (1936), 13-23.
Peter H. van der Kamp, On the Fourier transform of the greatest common divisor, Integers 13 (2013), #A24. [See Section 3 for historical remarks.]
J. C. Kluyver, Some formulae concerning the integers less than n and prime to n, in: KNAW, Proceedings, 9 I, 1906, Amsterdam, 1906, pp. 408-414; see p. 410.
P. Moree and H. Hommerson, Value distribution of Ramanujan sums and of cyclotomic polynomial coefficients, arXiv:math/0307352 [math.NT], 2003.
K. Motose, Ramanujan's sums and cyclotomic polynomials, Math. J. Okayama U. 47, no 1, (2005), Article 5.
C. A. Nicol, On restricted partitions and a generalization of the Euler phi number and the Moebius function, Proc. Natl. Acad. Sci. USA 39(9) (1953), 963-968.
C. A. Nicol and H. S. Vandiver, A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Natl. Acad. Sci. USA 40(9) (1954), 825-835.
K. G. Ramanathan, Some applications of Ramanujan's trigonometrical sum C_m(n), Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69.
Srinivasa Ramanujan, On certain trigonometric sums and their applications in the theory of numbers, Trans. Camb. Phil. Soc. 22 (1918), 259-276.
R. D. von Sterneck, Ein Analogon zur additiven Zahlentheorie, Sitzungsber. Akad. Wiss. Sapientiae Math.-Naturwiss. Kl. 111 (1902), 1567-1601 (Abt. IIa). [It may not be universally accessible.]
R. D. von Sterneck, Über ein Analogon zur additiven Zahlentheorie, Jahresbericht der Deutschen Mathematiker-Vereinigung 12 (1903), 110-113. [Summary of the 1902 paper.]
Wikipedia, Ramanujan's sum.
Aurel Wintner, On a statistics of the Ramanujan sums, Amer. J. Math., 64(1) (1942), 106-114.
FORMULA
T(n, k) = c_k(n) = Sum_{m=1..k, (m,k)=1} cos(2*Pi*m*n / k) = mu(k/gcd(k,n)) * phi(k) / phi(k/gcd(k,n)) = Sum_{d | gcd(k,n)} mu(k/d) * d. (All formulas were proved by Kluyver (1906, p. 410).) - Petros Hadjicostas, Aug 20 2019
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
1;
1, 1;
1, -1, 2;
1, 1, -1, 2;
1, -1, -1, 0, 4;
1, 1, 2, -2, -1, 2;
1, -1, -1, 0, -1, 1, 6;
1, 1, -1, 2, -1, -1, -1, 4;
1, -1, 2, 0, -1, -2, -1, 0, 6;
...
MATHEMATICA
t[n_, k_] := Sum[ c = Exp[2*Pi*I*m*(n/k)]; If[ GCD[m, k] == 1, c, 0], {m, 1, k}] // FullSimplify; Flatten[ Table[ t[n, k], {n, 1, 15}, {k, 1, n}]] (* Jean-François Alcover, Mar 15 2012 *)
(* to get the triangle in the example *)
TableForm[Table[t[n, k], {n, 1, 9}, {k, 1, n}]]
(* Petros Hadjicostas, Jul 27 2019 *)
CROSSREFS
KEYWORD
sign,easy,nice,tabl
AUTHOR
N. J. A. Sloane, Apr 09 2000
STATUS
approved