login
A054531
Triangular array T read by rows: T(n,k) = n/gcd(n,k) (n >= 1, 1 <= k <= n).
21
1, 2, 1, 3, 3, 1, 4, 2, 4, 1, 5, 5, 5, 5, 1, 6, 3, 2, 3, 6, 1, 7, 7, 7, 7, 7, 7, 1, 8, 4, 8, 2, 8, 4, 8, 1, 9, 9, 3, 9, 9, 3, 9, 9, 1, 10, 5, 10, 5, 2, 5, 10, 5, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12, 1, 13, 13, 13, 13, 13
OFFSET
1,2
COMMENTS
Sum of n-th row = A057660(n). - Reinhard Zumkeller, Aug 12 2009
Read as a linear sequence, this is conjectured to be the length of the shortest cycle of pebble-moves among the partitions of n (cf. A201144). - Andrew V. Sutherland, Nov 27 2011
The triangle of fractions A226314(i,j)/A054531(i,j) is an efficient way to enumerate the rationals [Fortnow]. - N. J. A. Sloane, Jun 09 2013
LINKS
Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
Yoram Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.
EXAMPLE
Triangle begins
1;
2, 1;
3, 3, 1;
4, 2, 4, 1;
5, 5, 5, 5, 1;
6, 3, 2, 3, 6, 1;
7, 7, 7, 7, 7, 7, 1;
8, 4, 8, 2, 8, 4, 8, 1;
9, 9, 3, 9, 9, 3, 9, 9, 1;
10, 5, 10, 5, 2, 5, 10, 5, 10, 1;
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1;
12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12, 1;
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1;
MATHEMATICA
Table[n/GCD[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Sep 13 2017 *)
PROG
(Haskell)
a054531 n k = div n $ gcd n k
a054531_row n = a054531_tabl !! (n-1)
a054531_tabl = zipWith (\u vs -> map (div u) vs) [1..] a050873_tabl
-- Reinhard Zumkeller, Jun 10 2013
(PARI) for(n=1, 10, for(k=1, n, print1(n/gcd(n, k), ", "))) \\ G. C. Greubel, Sep 13 2017
CROSSREFS
Cf. A050873, A164306, A226314, A277227 (row reversed, k=0..n-1).
Sequence in context: A134625 A325477 A277227 * A324602 A319226 A307449
KEYWORD
nonn,tabl,frac,easy
AUTHOR
N. J. A. Sloane, Apr 09 2000
STATUS
approved