OFFSET
1,2
COMMENTS
Sum of n-th row = A057660(n). - Reinhard Zumkeller, Aug 12 2009
Read as a linear sequence, this is conjectured to be the length of the shortest cycle of pebble-moves among the partitions of n (cf. A201144). - Andrew V. Sutherland, Nov 27 2011
The triangle of fractions A226314(i,j)/A054531(i,j) is an efficient way to enumerate the rationals [Fortnow]. - N. J. A. Sloane, Jun 09 2013
LINKS
Reinhard Zumkeller, Rows n = 1..120 of triangle, flattened
Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
R. J. Mathar, Plots of cycle graphs of the finite groups up to order 36, (2015).
Yoram Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823. Math. Rev. 90i:04001.
EXAMPLE
Triangle begins
1;
2, 1;
3, 3, 1;
4, 2, 4, 1;
5, 5, 5, 5, 1;
6, 3, 2, 3, 6, 1;
7, 7, 7, 7, 7, 7, 1;
8, 4, 8, 2, 8, 4, 8, 1;
9, 9, 3, 9, 9, 3, 9, 9, 1;
10, 5, 10, 5, 2, 5, 10, 5, 10, 1;
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1;
12, 6, 4, 3, 12, 2, 12, 3, 4, 6, 12, 1;
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 1;
MATHEMATICA
Table[n/GCD[n, k], {n, 1, 10}, {k, 1, n}]//Flatten (* G. C. Greubel, Sep 13 2017 *)
PROG
(Haskell)
a054531 n k = div n $ gcd n k
a054531_row n = a054531_tabl !! (n-1)
a054531_tabl = zipWith (\u vs -> map (div u) vs) [1..] a050873_tabl
-- Reinhard Zumkeller, Jun 10 2013
(PARI) for(n=1, 10, for(k=1, n, print1(n/gcd(n, k), ", "))) \\ G. C. Greubel, Sep 13 2017
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Apr 09 2000
STATUS
approved