login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054534 Square array giving Ramanujan sum T(n,k) = c_k(n) = Sum_{m=1..k, (m,k)=1} exp(2 Pi i m n / k), read by antidiagonals (n >= 1, k >= 1). 4
1, 1, -1, 1, 1, -1, 1, -1, -1, 0, 1, 1, 2, -2, -1, 1, -1, -1, 0, -1, 1, 1, 1, -1, 2, -1, -1, -1, 1, -1, 2, 0, -1, -2, -1, 0, 1, 1, -1, -2, 4, -1, -1, 0, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, 1, 1, 2, 2, -1, 2, -1, -4, -3, -1, -1, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, 1, 1, -1, -2, -1, -1, 6, 0, 0, -1, -1, 2, -1, 1, -1, 2, 0, 4, -2, -1, 0, -3, -4, -1, 0, -1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,13

REFERENCES

T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 160.

H. Rademacher, Collected Papers of Hans Rademacher, vol. II, MIT Press, 1974, p. 435.

S. Ramanujan, On Certain Trigonometrical Sums and their Applications in the Theory of Numbers, pp. 179-199 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea Publishing 2000.

LINKS

Table of n, a(n) for n=1..105.

Wikipedia, Ramanujan's sum

FORMULA

T(n, 1) = c_1(n) = 1. T(n, 2) = c_2(n) = A033999(n). T(n, 3) = c_3(n) = A099837(n) if n>1. T(n, 4) = c_4(n) = A176742(n) if n>1. T(n, 6) = c_6(n) = A100051(n) if n>1. - Michael Somos, Mar 21 2011

T(1, n) = c_n(1) = A008683(n). T(2, n) = c_n(2) = A086831(n). T(3, n) = c_n(3) = A085097(n). T(4, n) = c_n(4) = A085384(n). T(5, n) = c_n(5) = A085639(n). T(6, n) = c_n(6) = A085906(n). - Michael Somos, Mar 21 2011

T(n, n) = T(k * n, n) = A000010(n), T(n, 2*n) = -A062570(n). - Michael Somos, Mar 21 2011

EXAMPLE

Array begins

1 -1 -1 0 ...

1 1 -1 -2 ...

1 -1 2 0 ...

1 1 -1 2 ...

1 -1 -1 0 ...

MATHEMATICA

nmax = 14; mu[n_Integer] = MoebiusMu[n]; mu[_] = 0; t[n_, k_] := Total[ #*mu[k/#]& /@ Divisors[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 14 2011, after Pari *)

PROG

(PARI) {T(n, k) = if( n<1 || k<1, 0, sumdiv( n, d, if( k%d==0, d * moebius(k / d))))} /* Michael Somos, Dec 05 2002 */

(PARI) {T(n, k) = if( n<1 || k<1, 0, polsym( polcyclo( k), n) [n + 1])} /* Michael Somos, Mar 21 2011 */

CROSSREFS

Cf. A000010, A033999, A054532, A054533, A054535, A062570, A085097, A058384, A085639, A085906, A099837, A100051, A176742.

Sequence in context: A066520 A088526 A054535 * A085769 A237422 A102552

Adjacent sequences:  A054531 A054532 A054533 * A054535 A054536 A054537

KEYWORD

sign,tabl,nice

AUTHOR

N. J. A. Sloane, Apr 09 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 20 05:42 EDT 2017. Contains 293601 sequences.