login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117199
Expansion of 1/(1-x^2) + x/(1-x^3) + x^2/(1-x^4).
1
1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1
OFFSET
0,3
COMMENTS
Periodic {1,1,2,0,2,0,2,1,1,0,3,0}. Diagonal sums of A117198.
Number of divisors of n+2 in {2,3,4}. - Wesley Ivan Hurt, Jun 11 2023
FORMULA
G.f.: (1+2x+4x^2+3x^3+3x^4)/(1+x+x^2-x^4-x^5-x^6).
a(n) = - a(n-1) - a(n-2) + a(n-4) + a(n-5) + a(n-6). - Wesley Ivan Hurt, Jun 11 2023
MATHEMATICA
CoefficientList[ Series[1/(1 - x^2) + x/(1 - x^3) + x^2/(1 - x^4), {x, 0, 105}], x] (* Robert G. Wilson v, Mar 14 2006 *)
LinearRecurrence[{-1, -1, 0, 1, 1, 1}, {1, 1, 2, 0, 2, 0}, 120] (* or *) PadRight[ {}, 120, {1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0}] (* Harvey P. Dale, Dec 22 2013 *)
CROSSREFS
Sequence in context: A156596 A282570 A026613 * A230632 A052511 A054533
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 02 2006
EXTENSIONS
More terms from Robert G. Wilson v, Mar 14 2006
STATUS
approved