login
This site is supported by donations to The OEIS Foundation.

 

Logo

The submissions stack has been unacceptably high for several months now. Please voluntarily restrict your submissions and please help with the editing. (We don't want to have to impose further limits.)

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053254 Coefficients of the '3rd order' mock theta function nu(q) 9
1, -1, 2, -2, 2, -3, 4, -4, 5, -6, 6, -8, 10, -10, 12, -14, 15, -18, 20, -22, 26, -29, 32, -36, 40, -44, 50, -56, 60, -68, 76, -82, 92, -101, 110, -122, 134, -146, 160, -176, 191, -210, 230, -248, 272, -296, 320, -350, 380, -410, 446, -484, 522, -566, 612, -660, 715, -772, 830, -896, 966, -1038 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In Watson 1936 the function is denoted by upsilon(q). - Michael Somos, Jul 25 2015

REFERENCES

Leila A. Dragonette, Some asymptotic formulae for the mock theta functions of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31

George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80

LINKS

Table of n, a(n) for n=0..61.

FORMULA

G.f.: nu(q) = sum for n >= 0 of q^(n(n+1))/((1+q)(1+q^3)...(1+q^(2n+1)))

(-1)^n a(n) = number of partitions of n in which even parts are distinct and if k occurs then so does every positive even number less than k

G.f.: 1/(1 + x*(1-x)/(1 + x^2*(1-x^2)/(1 + x^3*(1-x^3)/(1 + x^4*(1-x^4)/(1 + x^5*(1-x^5)/(1 + ...)))))), a continued fraction. - Paul D. Hanna, Jul 09 2013

a(2*n) = A085140(n). a(2*n + 1) = - A053253(n). - Michael Somos, Jul 25 2015

EXAMPLE

G.f. = 1 - x + 2*x^2 - 2*x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 4*x^7 + 5*x^8 + ...

MATHEMATICA

Series[Sum[q^(n(n+1))/Product[1+q^(2k+1), {k, 0, n}], {n, 0, 9}], {q, 0, 100}]

PROG

(PARI) /* Continued Fraction Expansion: */

{a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 + x^(n-k+1)*(1 - x^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 09 2013

CROSSREFS

Other '3rd order' mock theta functions are at A000025, A053250, A053251, A053252, A053253, A053255.

Cf. A058140.

Sequence in context: A000929 A029146 A029053 * A067357 A051059 A132967

Adjacent sequences:  A053251 A053252 A053253 * A053255 A053256 A053257

KEYWORD

sign,easy

AUTHOR

Dean Hickerson, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 27 17:19 EDT 2015. Contains 261095 sequences.