This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053254 Coefficients of the '3rd order' mock theta function nu(q) 11
 1, -1, 2, -2, 2, -3, 4, -4, 5, -6, 6, -8, 10, -10, 12, -14, 15, -18, 20, -22, 26, -29, 32, -36, 40, -44, 50, -56, 60, -68, 76, -82, 92, -101, 110, -122, 134, -146, 160, -176, 191, -210, 230, -248, 272, -296, 320, -350, 380, -410, 446, -484, 522, -566, 612, -660, 715, -772, 830, -896, 966, -1038 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In Watson 1936 the function is denoted by upsilon(q). - Michael Somos, Jul 25 2015 REFERENCES Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Leila A. Dragonette, Some asymptotic formulas for the mock theta series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500. George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80. FORMULA G.f.: nu(q) = sum for n >= 0 of q^(n(n+1))/((1+q)(1+q^3)...(1+q^(2n+1))) (-1)^n a(n) = number of partitions of n in which even parts are distinct and if k occurs then so does every positive even number less than k G.f.: 1/(1 + x*(1-x)/(1 + x^2*(1-x^2)/(1 + x^3*(1-x^3)/(1 + x^4*(1-x^4)/(1 + x^5*(1-x^5)/(1 + ...)))))), a continued fraction. - Paul D. Hanna, Jul 09 2013 a(2*n) = A085140(n). a(2*n + 1) = - A053253(n). - Michael Somos, Jul 25 2015 EXAMPLE G.f. = 1 - x + 2*x^2 - 2*x^3 + 2*x^4 - 3*x^5 + 4*x^6 - 4*x^7 + 5*x^8 + ... MATHEMATICA Series[Sum[q^(n(n+1))/Product[1+q^(2k+1), {k, 0, n}], {n, 0, 9}], {q, 0, 100}] PROG (PARI) /* Continued Fraction Expansion: */ {a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 + x^(n-k+1)*(1 - x^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 09 2013 CROSSREFS Other '3rd order' mock theta functions are at A000025, A053250, A053251, A053252, A053253, A053255. Cf. A058140. Sequence in context: A000929 A029146 A029053 * A067357 A051059 A132968 Adjacent sequences:  A053251 A053252 A053253 * A053255 A053256 A053257 KEYWORD sign,easy AUTHOR Dean Hickerson, Dec 19 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 26 05:45 EDT 2018. Contains 303101 sequences. (Running on oeis4.)