login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053257 Coefficients of the '5th order' mock theta function f_1(q) 12
1, 0, 1, -1, 1, -1, 2, -2, 1, -1, 2, -2, 2, -2, 2, -3, 3, -2, 3, -4, 4, -4, 4, -5, 5, -4, 5, -6, 6, -6, 7, -8, 7, -7, 8, -9, 10, -9, 10, -12, 11, -11, 13, -14, 14, -15, 16, -17, 17, -16, 19, -21, 20, -21, 23, -25, 25, -25, 27, -29, 30, -30, 32, -35, 35, -35, 39, -41, 41, -43, 45, -49, 50, -49, 53, -57, 58, -59, 63, -67, 68 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

REFERENCES

George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255

Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 19, 22

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)

George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134.

Dean Hickerson, A proof of the mock theta conjectures, Inventiones Mathematicae, 94 (1988) 639-660.

George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304.

FORMULA

G.f.: f_1(q) = sum for n >= 0 of q^(n^2+n)/((1+q)(1+q^2)...(1+q^n)).

Consider partitions of n into parts differing by at least 2 and with smallest part at least 2. a(n) = number of them with largest part even minus number with largest part odd.

a(n) ~ (-1)^n * sqrt(phi) * exp(Pi*sqrt(n/15)) / (2*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019

MATHEMATICA

Series[Sum[q^(n^2+n)/Product[1+q^k, {k, 1, n}], {n, 0, 9}], {q, 0, 100}]

nmax = 100; CoefficientList[Series[Sum[x^(k^2+k) / Product[1+x^j, {j, 1, k}], {k, 0, Floor[Sqrt[nmax]]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 15 2019 *)

CROSSREFS

Other '5th order' mock theta functions are at A053256, A053258, A053259, A053260, A053261, A053262, A053263, A053264, A053265, A053266, A053267.

Sequence in context: A294602 A000174 A156268 * A331002 A151702 A151552

Adjacent sequences:  A053254 A053255 A053256 * A053258 A053259 A053260

KEYWORD

sign,easy

AUTHOR

Dean Hickerson, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 9 16:50 EDT 2020. Contains 335545 sequences. (Running on oeis4.)