login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053250 Coefficients of the '3rd order' mock theta function phi(q) 12
1, 1, 0, -1, 1, 1, -1, -1, 0, 2, 0, -2, 1, 1, -1, -2, 1, 3, -1, -2, 1, 2, -2, -3, 1, 4, 0, -4, 2, 3, -2, -4, 1, 5, -2, -5, 3, 5, -3, -5, 2, 7, -2, -7, 3, 6, -4, -8, 3, 9, -2, -9, 5, 9, -5, -10, 3, 12, -4, -12, 5, 11, -6, -13, 6, 16, -6, -15, 7, 15, -8, -17, 7, 19, -6, -20, 9, 19, -10, -22, 8, 25, -9, -25, 12, 25, -12, -27, 11, 31 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

REFERENCES

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.12), p. 58, Eq. (26.56).

Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355

Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31

LINKS

T. D. Noe, Table of n, a(n) for n=0..1000

Leila A. Dragonette, Some asymptotic formulae for the mock theta functions of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500

A. Folsom, K. Ono and R. C. Rhoades, Ramanujan's radial limits, 2013. - From N. J. A. Sloane, Feb 09 2013

George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80

FORMULA

Consider partitions of n into distinct odd parts. a(n) = number of them for which the largest part minus twice the number of parts is == 3 (mod 4) minus the number for which it is == 1 (mod 4).

a(n) = (-1)^n*(A027358(n)-A027357(n)). - Vladeta Jovovic, Mar 12 2006

G.f.: 1 + Sum_{k>0} x^k^2 /((1 + x^2) (1 + x^4) ... (1 + x^(2*k))).

EXAMPLE

1 + x - x^3 + x^4 + x^5 - x^6 - x^7 + 2*x^9 - 2*x^11 + x^12 + x^13 - x^14 + ...

MAPLE

f:=n->q^(n^2)/mul((1+q^(2*i)), i=1..n); add(f(n), n=0..10);

MATHEMATICA

Series[Sum[q^n^2/Product[1+q^(2k), {k, 1, n}], {n, 0, 10}], {q, 0, 100}]

PROG

(PARI) {a(n) = local(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 + x^(2*k)) + O(x^(n - (k-1)^2 + 1)), 1), n))} /* Michael Somos, Jul 16 2007 */

CROSSREFS

Other '3rd order' mock theta functions are at A000025, A053251, A053252, A053253, A053254, A053255.

Sequence in context: A111330 A225152 A117447 * A236627 A116664 A024161

Adjacent sequences:  A053247 A053248 A053249 * A053251 A053252 A053253

KEYWORD

sign,easy

AUTHOR

Dean Hickerson, Dec 19 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 15:44 EST 2014. Contains 250224 sequences.