This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053251 Coefficients of the '3rd order' mock theta function psi(q) 18
 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 19, 22, 24, 27, 31, 34, 37, 42, 46, 51, 57, 62, 68, 76, 83, 91, 101, 109, 120, 132, 143, 156, 171, 186, 202, 221, 239, 259, 283, 306, 331, 360, 388, 420, 455, 490, 529, 572, 616, 663, 716, 769, 827 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of partitions of n into odd parts such that if a number occurs as a part then so do all smaller positive odd numbers. Number of different partial sums of 1+[1,3]+[1,5]+[1,7]+[1,9]+... E.g. a(6)=2 because we have 6=1+1+1+1+1+1=1+1+3+1 - Jon Perry, Jan 01 2004 Also number of partitions of n such that largest part occurs exactly once and all the other parts occur exactly twice. Example: a(9)=4 because we have [9],[7,1,1],[5,2,2] and [3,2,2,1,1]. - Emeric Deutsch, Mar 08 2006 Number of partitions (d1,d2,...,dm) of n such that 0 < d1/1 < d2/2 < ... < dm/m. - Seiichi Manyama, Mar 17 2018 REFERENCES N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.13). Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355 Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe) Leila A. Dragonette, Some asymptotic formulas for the mock theta series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500. George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80. FORMULA G.f.: psi(q) = sum(n>=1, q^(n^2) / ( (1-q)*(1-q^3)*...*(1-q^(2*n-1)) ) ). G.f.: sum(k>=1, q^k*prod(j=1..k-1, 1+q^(2*j) ) ), (see the Fine reference, p. 58, Eq. (26,53)). - Emeric Deutsch, Mar 08 2006 EXAMPLE q + q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ... From Seiichi Manyama, Mar 17 2018: (Start) n | Partition (d1,d2,...,dm) | (d1/1, d2/2, ... , dm/m) --+--------------------------+------------------------- 1 | (1)                      | (1) 2 | (2)                      | (2) 3 | (3)                      | (3) 4 | (4)                      | (4)   | (1, 3)                   | (1, 3/2) 5 | (5)                      | (5)   | (1, 4)                   | (1, 2) 6 | (6)                      | (6)   | (1, 5)                   | (1, 5/2) 7 | (7)                      | (7)   | (1, 6)                   | (1, 3)   | (2, 5)                   | (2, 5/2) 8 | (8)                      | (8)   | (1, 7)                   | (1, 7/2)   | (2, 6)                   | (2, 3) 9 | (9)                      | (9)   | (1, 8)                   | (1, 4)   | (2, 7)                   | (2, 7/2)   | (1, 3, 5)                | (1, 3/2, 5/3) (End) MAPLE f:=n->q^(n^2)/mul((1-q^(2*i+1)), i=0..n-1); add(f(i), i=1..6); # second Maple program: b:= proc(n, i) option remember; (s-> `if`(n>s, 0, `if`(n=s, 1,       b(n, i-1)+b(n-i, min(n-i, i-1)))))(i*(i+1)/2)     end: a:= n-> `if`(n=0, 0, add(b(j, min(j, n-2*j-1)), j=0..iquo(n, 2))): seq(a(n), n=0..80);  # Alois P. Heinz, May 17 2018 MATHEMATICA Series[Sum[q^n^2/Product[1-q^(2k-1), {k, 1, n}], {n, 1, 10}], {q, 0, 100}] (* Second program: *) b[n_, i_] := b[n, i] = Function[s, If[n > s, 0, If[n == s, 1, b[n, i - 1] + b[n - i, Min[n - i, i - 1]]]]][i*(i + 1)/2]; a[n_] := If[n==0, 0, Sum[b[j, Min[j, n-2*j-1]], {j, 0, Quotient[n, 2]}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 17 2018, after Alois P. Heinz *) PROG (PARI) { n=20; v=vector(n); for (i=1, n, v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2, n, k=length(v[i-1]); for (j=1, k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]+2*i-1)); c=vector(n); for (i=1, n, for (j=1, 2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry (PARI) {a(n) = local(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k-1) / (1 - x^(2*k-1)) + O(x^(n-(k-1)^2+1))), n))} /* Michael Somos, Sep 04 2007 */ CROSSREFS Other '3rd order' mock theta functions are at A000025, A053250, A053252, A053253, A053254, A053255. Cf. A003475. Sequence in context: A029148 A067842 A164066 * A090184 A174575 A029057 Adjacent sequences:  A053248 A053249 A053250 * A053252 A053253 A053254 KEYWORD nonn,easy AUTHOR Dean Hickerson, Dec 19 1999 EXTENSIONS More terms from Emeric Deutsch, Mar 08 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 12:57 EST 2019. Contains 320327 sequences. (Running on oeis4.)