login
A053255
Coefficients of the '3rd-order' mock theta function rho(q).
10
1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 0, 2, -1, -1, 1, -1, -1, 2, -1, 0, 2, -1, -1, 2, -2, -1, 3, -2, -1, 3, -2, -1, 3, -2, -1, 4, -3, -1, 4, -2, -2, 4, -3, -2, 5, -4, -2, 6, -3, -2, 6, -4, -2, 7, -5, -2, 7, -5, -3, 8, -6, -3, 9, -6, -3, 10, -6, -4, 10, -7, -4, 12, -8, -4, 13, -8, -5, 13, -9, -5, 15, -10, -5, 16, -11, -6, 17, -12, -7, 19, -13, -6, 21, -13
OFFSET
0,13
REFERENCES
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 15.
LINKS
Leila A. Dragonette, Some asymptotic formulas for the mock theta series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500.
John F. R. Duncan, Michael J. Griffin and Ken Ono, Proof of the Umbral Moonshine Conjecture, arXiv:1503.01472 [math.RT], 2015.
George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80.
FORMULA
G.f.: rho(q) = Sum_{n >= 0} q^(2*n*(n+1))/((1+q+q^2)*(1+q^3+q^6)*...*(1+q^(2*n+1)+q^(4*n+2))).
MATHEMATICA
Series[Sum[q^(2n(n+1))/Product[1+q^(2k+1)+q^(4k+2), {k, 0, n}], {n, 0, 6}], {q, 0, 100}]
CROSSREFS
Other '3rd-order' mock theta functions are at A000025, A053250, A053251, A053252, A053253, A053254.
Sequence in context: A340831 A334862 A329801 * A085856 A132126 A324882
KEYWORD
sign,easy
AUTHOR
Dean Hickerson, Dec 19 1999
STATUS
approved