This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053255 Coefficients of the '3rd order' mock theta function rho(q) 10
 1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 0, 2, -1, -1, 1, -1, -1, 2, -1, 0, 2, -1, -1, 2, -2, -1, 3, -2, -1, 3, -2, -1, 3, -2, -1, 4, -3, -1, 4, -2, -2, 4, -3, -2, 5, -4, -2, 6, -3, -2, 6, -4, -2, 7, -5, -2, 7, -5, -3, 8, -6, -3, 9, -6, -3, 10, -6, -4, 10, -7, -4, 12, -8, -4, 13, -8, -5, 13, -9, -5, 15, -10, -5, 16, -11, -6, 17, -12, -7, 19, -13, -6, 21, -13 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 REFERENCES Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 15 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Leila A. Dragonette, Some asymptotic formulas for the mock theta series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500. John F. R. Duncan, Michael J. Griffin and Ken Ono, Proof of the Umbral Moonshine Conjecture, arXiv:1503.01472 [math.RT], 2015. George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80. FORMULA G.f.: rho(q) = sum for n >= 0 of q^(2n(n+1))/((1+q+q^2)(1+q^3+q^6)...(1+q^(2n+1)+q^(4n+2))) MATHEMATICA Series[Sum[q^(2n(n+1))/Product[1+q^(2k+1)+q^(4k+2), {k, 0, n}], {n, 0, 6}], {q, 0, 100}] CROSSREFS Other '3rd order' mock theta functions are at A000025, A053250, A053251, A053252, A053253, A053254. Sequence in context: A237717 A154338 A087436 * A085856 A132126 A031264 Adjacent sequences:  A053252 A053253 A053254 * A053256 A053257 A053258 KEYWORD sign,easy AUTHOR Dean Hickerson, Dec 19 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 12:08 EST 2019. Contains 319306 sequences. (Running on oeis4.)