login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067357 Number of self-conjugate partitions of 4n+1 into odd parts. 2
1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 8, 10, 10, 12, 14, 15, 18, 20, 22, 26, 29, 32, 36, 40, 44, 50, 56, 60, 68, 76, 82, 92, 101, 110, 122, 134, 146, 160, 176, 191, 210, 230, 248, 272, 296, 320, 350, 380, 410, 446, 484, 522, 566, 612, 660, 715, 772, 830, 896, 966, 1038, 1120 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also number of partitions of n in which even parts are distinct and if k occurs then so does every positive even number less than k (Dean Hickerson). Absolute values of the terms of A053254. - Emeric Deutsch, Feb 10 2006

The number of self-conjuage partitions of n into odd parts is nonzero if and only if n = 4*k + 1 for some nonnegative integer k. - Michael Somos, Jul 25 2015

REFERENCES

P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p. 260, Article 512.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

George E. Andrews, The Bhargava-Adiga Summation and Partitions, Journal of the Indian Mathematical Society, Volume 84, Issue 3-4, 2017.

George E. Andrews, Integer partitions with even parts below odd parts and the mock theta functions, to appear in Annals of Combinatorics, 2017.

FORMULA

G.f.: Sum_{k>=0} q^(k*(k+1)) / ((1-q) * (1-q^3) ... (1-q^(2*k+1)). - Emeric Deutsch and Dean Hickerson

G.f.: Sum_{k>=0} q^k * (1+q) * (1+q^3) ... (1+q^(2*k-1)). - Dean Hickerson and Vladeta Jovovic

G.f.: 1/(1 - x*(1+x)/(1 + x^2*(1-x^2)/(1 - x^3*(1+x^3)/(1 + x^4*(1-x^4)/(1 - x^5*(1+x^5)/(1 - ...)))))), a continued fraction. - Paul D. Hanna, Jul 09 2013

Expansion of nu(-x) in powers of x where nu() is a 3rd order mock theta function. - Michael Somos, Jul 25 2015

a(n) = (-1)^n * A053254(n). a(2*n) = A085140(n). a(2*n + 1) = A053253(n). - Michael Somos, Jul 25 2015

a(n) ~ exp(Pi*sqrt(n/6)) / (2^(3/2)*sqrt(n)). - Vaclav Kotesovec, Jun 15 2019

EXAMPLE

a(5)=3 because we have [11,1,1,1,1,1,1,1,1,1,1], [9,3,3,1,1,1,1,1,1] and [5,5,5,3,3].

G.f. = 1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + ...

MAPLE

g:=sum(q^(k*(k+1))/product(1-q^(2*j+1), j=0..k), k=0..8): gser:=series(g, q=0, 80): seq(coeff(gser, q, n), n=0..75); # Emeric Deutsch, Feb 10 2006

MATHEMATICA

a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / Product[ 1 - x^i, {i, 1, 2 k + 1, 2}], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jul 25 2015 *)

PROG

(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint( 4*n+1) -1) \ 2, x^(k^2 + k) / prod(j=0, k, 1 - x^(2*j+1), 1 + x * O(x^(n - k^2 - k)))), n))}; /* Michael Somos, Jan 27 2008 */

(PARI) /* Continued Fraction Expansion: */

{a(n)=local(CF); CF=1+x; for(k=0, n, CF=1/(1 + (-x)^(n-k+1)*(1 - (-x)^(n-k+1))*CF+x*O(x^n))); polcoeff(CF, n)} \\ Paul D. Hanna, Jul 09 2013

CROSSREFS

Cf. A000700, A000701.

Cf. A053253, A053254, A085140.

Sequence in context: A029146 A029053 A053254 * A051059 A132968 A132967

Adjacent sequences:  A067354 A067355 A067356 * A067358 A067359 A067360

KEYWORD

easy,nonn,changed

AUTHOR

Naohiro Nomoto, Feb 24 2002

EXTENSIONS

More terms from Emeric Deutsch, Feb 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 07:14 EDT 2019. Contains 324145 sequences. (Running on oeis4.)