OFFSET
0,2
COMMENTS
T(n, k) = ^2P_n^k in the notation of the given reference with T(0, 0) := 1. The monic row polynomials s(n,x) := Sum_{m=0..n} T(n, k)*x^k which are s(n, x) = Product_{j=0..n-1} (x-(2+j)), n >= 1 and s(0, x)=1 satisfy s(n, x+y) = Sum_{k=0..n} binomial(n, k)*s(k,x)*S1(n-k, y), with the Stirling1 polynomials S1(n, x) = Sum_{m=1..n} (A008275(n, m)*x^m) and S1(0, x)=1.
In the umbral calculus (see the S. Roman reference given in A048854) the s(n, x) polynomials are called Sheffer polynomials for (exp(2*t), exp(t)-1). This translates to the usual exponential Riordan (Sheffer) notation (1/(1+x)^2, log(1+x)).
See A143491 for the unsigned version of this array and A143494 for the inverse. - Peter Bala, Aug 25 2008
Corresponding to the generalized Stirling number triangle of second kind A137650. - Peter Luschny, Sep 18 2011
Unsigned, reversed rows (cf. A145324, A136124) are the dimensions of the cohomology of a complex manifold with a symmetric group (S_n) action. See p. 17 of the Hyde and Lagarias link. See also the Murri link for an interpretation as the Betti numbers of the moduli space M(0,n) of smooth Riemann surfaces. - Tom Copeland, Dec 09 2016
The row polynomials s(n, x) = (-1)^n*risingfactorial(2 - x, n) are related to the column sequences of the unsigned Abel triangle A137452(n, k), for k >= 2. See the formula there. - Wolfdieter Lang, Nov 21 2022
REFERENCES
Y. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, American Math. Soc. Colloquium Publications Vol. 47, 1999. [From Tom Copeland, Jun 29 2008]
S. Roman, The Umbral Calculus, Academic Press, 1984 (also Dover Publications, 2005).
LINKS
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
E. Getzler, Operads and moduli spaces of genus 0 Riemann surfaces, arXiv:alg-geom/9411004, 1994, (see p. 23, g(x,t)). [From Tom Copeland, Dec 11 2011]
T. Hyde and J. Lagarias Polynomial splitting measures and cohomology of the pure braid group, arXiv preprint arXiv:1604.05359 [math.RT], 2016.
Y. Manin, Generating functions in algebraic geometry and sums over trees, arXiv:alg-geom/9407005, 1994, (Eqn. 0.7 and 1.7). [From Tom Copeland, Dec 10 2011]
D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
R. Murri, Fatgraph Algorithms and the Homology of the Kontsevich Complex, arXiv:1202.1820 [math.AG], 2012, (see Table 1, p. 3). [From Tom Copeland, Sep 18 2012]
FORMULA
T(n, k) = T(n-1, k-1) - (n+1)*T(n-1, k), n >= k >= 0; T(n, k) = 0, n < k; T(n, -1) = 0, T(0, 0) = 1.
E.g.f. for k-th column of signed triangle: ((log(1+x))^k)/(k!*(1+x)^2).
Triangle (signed) = [-2, -1, -3, -2, -4, -3, -5, -4, -6, -5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; triangle (unsigned) = [2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...], where DELTA is Deléham's operator defined in A084938 (unsigned version in A143491).
E.g.f.: (1 + x)^(y-2). - Vladeta Jovovic, May 17 2004 [For row polynomials s(n, y)]
With P(n, t) = Sum_{j=0..n-2} T(n-2,j) * t^j and P(1, t) = -1 and P(0, t) = 1, then G(x, t) = -1 + exp[P(.,t)*x] = [(1+x)^t - 1 - t^2 * x] / [t(t-1)], whose compositional inverse in x about 0 is given in A074060. G(x, 0) = -log(1+x) and G(x, 1) = (1+x) log(1+x) - 2x. G(x, q^2) occurs in formulas on pages 194-196 of the Manin reference. - Tom Copeland, Feb 17 2008
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then T(n,i) = f(n,i,2), for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
T(n, k) = Sum_{j=0..n} (-1)^(n-j)*(n-j+1)!*binomial(n, j)*Stirling1(j, k). - Mélika Tebni, May 02 2022
From Wolfdieter Lang, Nov 24 2022: (Start)
Recurrence for row polynomials {s(n, x)}_{n>=0}: s(0, x) = 1, s(n, x) = (x - 2)*exp(-(d/dx)) s(n-1, x), for n >= 1. This is adapted from the general Sheffer result given by S. Roman, Corollary 3.7.2., p. 50.
Recurrence for column sequence {T(n, k)}_{n>=k}: T(n, n) = 1, T(n, k) = (n!/(n-k))*Sum_{j=k..n-1} (1/j!)*(a(n-1-j) + k*beta(n-1-j))*T(n-1, k), for k >= 0, where alpha = repeat(-2, 2) and beta(n) = [x^n] (d/dx)log(log(x)/x) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), for n >= 0. This is the adapted Boas-Buck recurrence, also given in Rainville, Theorem 50., p. 141, For the references and a comment see A046521. (End)
EXAMPLE
The Triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: -2 1
2: 6 -5 1
3: -24 26 -9 1
4: 120 -154 71 -14 1
5 -720 1044 -580 155 -20 1
6: 5040 -8028 5104 -1665 295 -27 1
7: -40320 69264 -48860 18424 -4025 511 -35 1
8: 362880 -663696 509004 -214676 54649 -8624 826 -44
9: -3628800 6999840 -5753736 2655764 -761166 140889 -16884 1266 -54 1
... [reformatted by Wolfdieter Lang, Nov 21 2022]
MAPLE
A049444_row := proc(n) local k, i;
add(add(Stirling1(n, n-i), i=0..k)*x^(n-k-1), k=0..n-1);
seq(coeff(%, x, k), k=1..n-1) end:
seq(print(A049444_row(n)), n=1..7); # Peter Luschny, Sep 18 2011
A049444:= (n, k)-> add((-1)^(n-j)*(n-j+1)!*binomial(n, j)*Stirling1(j, k), j=0..n):
seq(print(seq(A049444(n, k), k=0..n)), n=0..11); # Mélika Tebni, May 02 2022
MATHEMATICA
t[n_, i_] = Sum[(-1)^k*Binomial[n, k]*(k+1)!*StirlingS1[n-k, i], {k, 0, n-i}]; Flatten[Table[t[n, i], {n, 0, 9}, {i, 0, n}]] [[1 ;; 48]]
(* Jean-François Alcover, Apr 29 2011, after Milan Janjic *)
PROG
(Haskell)
a049444 n k = a049444_tabl !! n !! k
a049444_row n = a049444_tabl !! n
a049444_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 2)
-- Reinhard Zumkeller, Mar 11 2014
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Second formula corrected by Philippe Deléham, Nov 09 2008
STATUS
approved