login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136124 Triangle read by rows: T(n,k) = (-1)^(n+k)*Sum_{j=1..k} s(n,j), where s(n,j) are the signed Stirling numbers of the first kind (n >= 2; 1 <= k <= n-1; s(n,j) = A008275(n,j)). 4
1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Sum of entries in row n = n!/2 = A001710(n). T(n,1) = (n-1)! = A000142(n-1). Columns 2,3,4 and 5 yield A001705,A001706,A001707 and A001708, respectively.

See A143491 for the interpretation of these numbers as restricted Stirling numbers of the first kind. See A049444 for a signed version of this array. - Peter Bala, Aug 25 2008

With offset n=0, k=0: triangle T(n,k), read by rows, given by [2,1,3,2,4,3,5,4,6,5,...] DELTA [1,0,1,0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 29 2011

With offset n=0, k=0: T(n,k) is the number of ways to seat n people at any number of round tables and serve exactly k of the tables water, some number of the remaining tables red wine, and the rest of the tables white wine. - Geoffrey Critzer, Mar 13 2015

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

FORMULA

E.g.f.: Sum[(1/n!)T(n,k)x^n*t^k, k=1..n-1, n>=2]=1/[(1+t)(1-x)^t]-(1+tx)/(1+t). Generating polynomial of row n = t*Product(j+t, j=2..n-1). T(n,k) is the sum of all products of n-k-1 different integers taken from {2,3,...,n-1}. For example, T(6,3) = 2*3 + 2*4 + 2*5 + 3*4 + 3*5 + 4*5 = 71.

EXAMPLE

T(6,3)=71 because (-1)^9*[s(6,1)+s(6,2)+s(6,3)]=-(-120+274-225)=71.

Triangle starts:

    1;

    2,   1;

    6,   5,   1;

   24,  26,   9,   1;

  120, 154,  71,  14,   1;

MAPLE

A136124_row := proc(n) local k, j; `if`(n=0, 1, seq((-1)^(n+1-k)*add(stirling1(n+1, j), j=1..k), k=1..n)) end: seq(print(A136124_row(r)), r=1..6); # Peter Luschny, Sep 29 2011

with(combinat): T:=proc(n, k) options operator, arrow: (-1)^(n+k)*(sum(stirling1(n, j), j=1..k)) end proc: for n from 2 to 11 do seq(T(n, k), k=1..n-1) end do; # yields sequence in triangular form

MATHEMATICA

nn = 10; Map[Select[#, # > 0 &] &, Range[0, nn]!CoefficientList[Series[Exp[(2 + y) Log[1/(1 - x)]], {x, 0, nn}], {x, y}]] // Flatten (* Geoffrey Critzer, Mar 13 2015 *)

CROSSREFS

Cf. A000142, A008275, A001705, A001706, A001707, A001708, A001710.

Cf. A049444, A143491. [Peter Bala, Aug 25 2008]

Sequence in context: A121575 A049444 * A143491 A070918 A113381 A228175

Adjacent sequences:  A136121 A136122 A136123 * A136125 A136126 A136127

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Dec 23 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 09:35 EST 2017. Contains 295076 sequences.