The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214152 Number of permutations T(n,k) in S_n containing an increasing subsequence of length k; triangle T(n,k), n>=1, 1<=k<=n, read by rows. 15
 1, 2, 1, 6, 5, 1, 24, 23, 10, 1, 120, 119, 78, 17, 1, 720, 719, 588, 207, 26, 1, 5040, 5039, 4611, 2279, 458, 37, 1, 40320, 40319, 38890, 24553, 6996, 891, 50, 1, 362880, 362879, 358018, 268521, 101072, 18043, 1578, 65, 1, 3628800, 3628799, 3612004, 3042210, 1438112, 337210, 40884, 2603, 82, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Rows n = 1..55, flattened Eric Weisstein's World of Mathematics, Permutation Pattern Wikipedia, Longest increasing subsequence problem Wikipedia, Young tableau FORMULA T(n,k) = Sum_{i=k..n} A047874(n,i). T(n,k) = A000142(n) - A214015(n,k-1). EXAMPLE T(3,2) = 5.  All 3! = 6 permutations of {1,2,3} contain an increasing subsequence of length 2 with the exception of 321. Triangle T(n,k) begins: :    1; :    2,    1; :    6,    5,    1; :   24,   23,   10,    1; :  120,  119,   78,   17,   1; :  720,  719,  588,  207,  26,  1; : 5040, 5039, 4611, 2279, 458, 37,  1; MAPLE h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j       +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)     end: g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1\$n])^2, `if`(i<1, 0,                  add(g(n-i*j, i-1, [l[], i\$j]), j=0..n/i))): T:= (n, k)-> n! -g(n, k-1, []): seq(seq(T(n, k), k=1..n), n=1..12); MATHEMATICA h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}] ]; g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; t[n_, k_] := n! - g[n, k-1, {}]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *) CROSSREFS Columns k=1-10 give: A000142 (for n>0), A033312, A056986, A158005, A158432, A159139, A159175, A217675, A217676, A217677. Row sums give: A003316. T(2n,n) gives A269021. Diagonal and lower diagonals give: A000012, A002522, A217200, A217193. Cf. A047874, A214015. Sequence in context: A159924 A133367 A179456 * A121575 A121576 A049444 Adjacent sequences:  A214149 A214150 A214151 * A214153 A214154 A214155 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jul 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 23:12 EST 2020. Contains 338779 sequences. (Running on oeis4.)