login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002209 Denominators of coefficients for numerical integration.
(Formerly M2015 N0796)
21
1, 2, 12, 8, 720, 288, 60480, 17280, 3628800, 89600, 95800320, 17418240, 2615348736000, 402361344000, 4483454976000, 98402304, 32011868528640000, 342372925440000, 51090942171709440000, 5377993912811520000, 33720021833328230400000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is the denominator of the "reverse" multiple zeta value zeta_n^R(0,0,...,0) for n > 0. - Jonathan Sondow, Nov 29 2006

The numerators are given in A002208.

REFERENCES

Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 529.

N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), 327-351.

Guodong Liu, Some computational formulas for Norlund numbers, Fib. Quart., 45 (2007), 133-137.

A. N. Lowan and H. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys., 22 (1943), 49-50.

A. N. Lowan and H. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys. Mass. Inst. Tech. 22 (1943), 49-50.[Annotated scanned copy]

FORMULA

G.f. of A002208(n)/a(n): -x/((1-x)*log(1-x)).

a(n) = denominator(v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013

a(n) = denominator(((-1)^n/n!)*Sum_{k=0..n} Stirling1(n+1,k+1)/(k+1)). - Vladimir Kruchinin, Oct 12 2016

EXAMPLE

1, 1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, 5257/17280, 1070017/3628800, 25713/89600, 26842253/95800320, 4777223/17418240, 703604254357/2615348736000, 106364763817/402361344000, ... = A002208/A002209.

MATHEMATICA

a[0] = 1; a[n_] := (-1)^n*Sum[(-1)^(k+1)*BernoulliB[k]*StirlingS1[n, k]/k, {k, 1, n}]/(n-1)!; Table[a[n], {n, 0, 20}] // Denominator (* Jean-François Alcover, Sep 27 2012, after Rudi Huysmans's formula for A002208 *)

Denominator[CoefficientList[Series[-x/((1-x)Log[1-x]), {x, 0, 20}], x]] (* Harvey P. Dale, Feb 01 2013 *)

PROG

(Maxima)

a(n):=denom(((-1)^(n)*sum(stirling1(n+1, k+1)/(k+1), k, 0, n))/(n)!); /* Vladimir Kruchinin, Oct 12 2016 */

CROSSREFS

Cf. A002208. See also A002657, A002790, A002206, A002207, A006232, A006233.

Sequence in context: A001898 A268230 A229628 * A100654 A166544 A081468

Adjacent sequences:  A002206 A002207 A002208 * A002210 A002211 A002212

KEYWORD

nonn,frac,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 07:15 EDT 2019. Contains 327995 sequences. (Running on oeis4.)