login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002208 Numerators of coefficients for numerical integration.
(Formerly M3737 N1527)
21
1, 1, 5, 3, 251, 95, 19087, 5257, 1070017, 25713, 26842253, 4777223, 703604254357, 106364763817, 1166309819657, 25221445, 8092989203533249, 85455477715379, 12600467236042756559, 1311546499957236437, 8136836498467582599787 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The denominators are given in A002209.

a(n) is (-1)^n times the numerator of the "reverse" multiple zeta value zeta_n^R(0,0,...,0) for n > 0. - Jonathan Sondow, Nov 29 2006

a(n) = A191578(2*n,n)/(2*n)!, n > 0. - Vladimir Kruchinin, Feb 02 2013

The denominators are given in A002209.

REFERENCES

E. Isaacson and H. B. Keller, Analysis of Numerical Methods, ISBN 0 471 42865 5, 1966, John Wiley and Sons, pp. 318-319.

Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 529.

N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), 327-351.

D. Kruchinin and V. Kruchinin, A Generating Function for the Diagonal T2n,n in Triangles, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.

Guodong Liu, Some computational formulas for Norlund numbers, Fib. Quart., 45 (2007), 133-137.

A. N. Lowan and H. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys., 22 (1943), 49-50.

A. N. Lowan and H. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys. Mass. Inst. Tech. 22 (1943), 49-50.[Annotated scanned copy]

M. O. Rubinstein, Identities for the Riemann zeta function, Ramanujan J. 27, No. 1, 29-42 (2012) and arXiv:0812.2592.

Index entries for sequences related to Bernoulli numbers.

FORMULA

G.f. of rationals a(n)/A002209(n): -x/((1-x)*log(1-x)).

Let K_i = a(i)/A002209(i), for i >= 1, and [i n] = Stirling numbers of the first kind (A048994), {i n} = Stirling numbers of the second kind (A048993) and B_i the original Bernoulli numbers (A164555/A027642). Then K_i = ((-1)^(i-1) / (i-1)!)*Sum_{n=1..i} [i n]*B_n/n and B_i = i*Sum_{n=1..i} (-1)^(n-1)*{i n}*(n-1)!*K_n. - Rudi Huysmans, rudi_huysmans(AT)hotmail.com [see the second Mathematica program for K_n = a[n_] with B_k = (-1)^k * BernoulliB[k]. - Wolfdieter Lang, Aug 09 2017]

a(n) = numerator((-1)^n*Sum_{k=0..n} (k!*Stirling2(n,k)* Stirling1(n+k,n))/(n+k)!). - Vladimir Kruchinin, Feb 02 2013

a(n) = numerator(v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013

a(n) = numerator((1/(n-1)!)*Sum_{k=0..n} ((-1)^(n-k)*binomial(2*n,n-k)*Stirling2(n+k,k))/(n+k)), n > 0, a(0)=1. - Vladimir Kruchinin, Apr 05 2016

a(n) = numerator(((-1)^n/n!)*Sum_{k=0..n} Stirling1(n+1,k+1)/(k+1)). - Vladimir Kruchinin, Oct 12 2016

EXAMPLE

1, 1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, 5257/17280, 1070017/3628800, 25713/89600, 26842253/95800320, 4777223/17418240, 703604254357/2615348736000, 106364763817/402361344000, ... = A002208/A002209.

MATHEMATICA

Numerator/@CoefficientList[Series[-x/((1-x)Log[1-x]), {x, 0, 20}], x] (* Harvey P. Dale, May 04 2011 *)

a[0] = 1; a[n_] := (-1)^n*Sum[(-1)^(k+1)*BernoulliB[k]*StirlingS1[n, k]/k, {k, 1, n}]/(n-1)!; Table[a[n], {n, 0, 20}] // Numerator (* Jean-François Alcover, Sep 27 2012, after Rudi Huysmans's formula *)

PROG

(Maxima)

a(n):=if n=0 then 1 else  1/(n-1)!*sum(((-1)^(n-k)*binomial(2*n, n-k)*stirling2(n+k, k))/(n+k), k, 0, n); /* Vladimir Kruchinin, Apr 05 2016 */

a(n):=num(((-1)^(n)*sum(stirling1(n+1, k+1)/(k+1), k, 0, n))/(n)!); /* Vladimir Kruchinin, Oct 12 2016 */

CROSSREFS

Cf. A002209. See also A002657, A002790, A006232, A006233, A002206, A002207, A191578.

Sequence in context: A230389 A048885 A264738 * A100653 A105318 A304287

Adjacent sequences:  A002205 A002206 A002207 * A002209 A002210 A002211

KEYWORD

frac,nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 16:34 EDT 2019. Contains 328118 sequences. (Running on oeis4.)