login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137452 Triangular array of the coefficients of the sequence of Abel polynomials A(n,x) := x*(x-n)^(n-1). 12
1, 0, 1, 0, -2, 1, 0, 9, -6, 1, 0, -64, 48, -12, 1, 0, 625, -500, 150, -20, 1, 0, -7776, 6480, -2160, 360, -30, 1, 0, 117649, -100842, 36015, -6860, 735, -42, 1, 0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1, 0, 43046721, -38263752, 14880348, -3306744, 459270, -40824, 2268, -72, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Row sums give A177885.
The Abel polynomials are associated with the Abel operator t*exp(y*t)*p(x) = t*p(x+y).
From Peter Luschny, Jan 14 2009: (Start)
Abs(T(n,k)) is the number of rooted labeled trees on n+1 vertices with a root degree k (Clarke's formula).
The row sums in the unsigned case, Sum_{k=0..n} abs(T(n,k)), count the trees on n+1 labeled nodes, A000272(n+1). (End)
Exponential Riordan array [1, W(x)], W(x) the Lambert W-function. - Paul Barry, Nov 19 2010
The inverse array is the exponential Riordan array [1, x*exp(x)], which is A059297. - Peter Bala, Apr 08 2013
The inverse Bell transform of [1,2,3,...]. See A264428 for the Bell transform and A264429 for the inverse Bell transform. - Peter Luschny, Dec 20 2015
Also the Bell transform of (-1)^n*(n+1)^n. - Peter Luschny, Jan 18 2016
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 14 and 29
LINKS
W. Y. Chen, A general bijective algorithm for trees, PNAS December 1, 1990 vol. 87 no. 24 9635-9639.
L. E. Clarke, On Cayley's formula for counting trees, J. London Math. Soc. 33 (1958), 471-475.
Péter L. Erdős and L. A. Székely, Applications of Antilexicographic Order. I., An Enumerative Theory of Trees, Adv. in Appl. Math. 10, (1989) 488-496.
Eric Weisstein's World of Mathematics, Abel Polynomial.
Wikipedia, Abel Polynomials.
Bao-Xuan Zhu, Total positivity from a generalized cycle index polynomial, arXiv:2006.14485 [math.CO], 2020.
FORMULA
Row n gives the coefficients of the expansion of x*(x-n)^(n-1).
Abs(T(n,k)) = C(n-1,k-1)*n^(n-k). - Peter Luschny, Jan 14 2009
From Wolfdieter Lang, Nov 08 2022: (Start)
From the exponential Riordan (also Sheffer of Jabotinsky) type (1, LambertW) array (see comments).
E.g.f. of column sequence k, LambertW(x)^k/k!, for k >= 0.
E.g.f. of row polynomials P_n(y) = Sum_{k=0..n} T(n, k)*y^k: exp(y*LambertW(x)).
Recurrence for T: T(n, k) = 0 for n < k; T(n, 0) = 1 for n = 0 otherwise 0; T(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j,k-1)*(-1)^j*T(n-1, k-1+j). (Jabotinsky type convolution triangle, the e.g.f.s for the a- and z-sequences are exp(-x), and 0. See the link in A006232.)
Recurrence for column k of T: T(n, k) = 0 for n < k, T(k, k) = 1, for k >= 0 otherwise T(n, k) = (n!*k/(n-k))*Sum_{j=k..n-1} (1/j!)*beta(n-1-j)*T(j, k), where beta(n) = A264234(n+1)/A095996(n+1) = {-1, 2, -9/2, 32/3, -625/24, ...} with o.g.f. d/dx(log(LambertW(x)/x). See the Boas-Buck or Rainville references given in A046521, and my Aug 10 2017 comment there.
Recurrence for the row polynomials P_0(x) = 1, and P_n(x) = x*substitute(z=d/dx, exp(-z)/(1+z)) P_(n-1)(x), for n >= 1, with coefficient z^k of exp(-z)/(1+z) given by (-1)^k*A061354(k)/A061355(k). See the Roman reference Corollary 3.7.2., p. 50. (End)
The column sequences for the unsigned triangle Abs(T(n, k)), for k >= 2, are also given by {n^(n-k)*(n-1)*s(k-2, n)/(k-1)!}_{n>=k} with the row polynomials s(n, x) = risingfactorial(x - (n+1), n) of A049444. - Wolfdieter Lang, Nov 21 2022
EXAMPLE
1;
0, 1;
0, -2, 1;
0, 9, -6, 1;
0, -64, 48, -12, 1;
0, 625, -500, 150, -20, 1;
0, -7776, 6480, -2160, 360, -30, 1;
0, 117649, -100842, 36015, -6860, 735, -42, 1;
0, -2097152, 1835008, -688128, 143360, -17920, 1344, -56, 1;
MAPLE
T := proc(n, k) if n = 0 and k = 0 then 1 else binomial(n-1, k-1)*(-n)^(n-k) fi end; seq(print(seq(T(n, k), k=0..n)), n=0..7); # Peter Luschny, Jan 14 2009
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (-n-1)^n, 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
a0 = 1 a[x, 0] = 1; a[x, 1] = x; a[x_, n_] := x*(x - a0*n)^(n - 1); Table[Expand[a[x, n]], {n, 0, 10}]; a1 = Table[CoefficientList[a[x, n], x], {n, 0, 10}]; Flatten[a1]
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, (-n-1)^n], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
PROG
(Sage) # uses[inverse_bell_transform from A264429]
def A137452_matrix(dim):
nat = [n for n in (1..dim)]
return inverse_bell_transform(dim, nat)
A137452_matrix(10) # Peter Luschny, Dec 20 2015
CROSSREFS
Row sums A177885.
Cf. A000272, A061356, A059297 (inverse array), A264429.
Sequence in context: A274740 A360657 A327350 * A158335 A111595 A021478
KEYWORD
tabl,sign,easy
AUTHOR
Roger L. Bagula, Apr 18 2008
EXTENSIONS
Better name by Peter Bala, Apr 08 2013
Edited by Joerg Arndt, Apr 08 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)