login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036278
Denominators in Taylor series for cot x.
5
1, 3, 45, 945, 4725, 93555, 638512875, 18243225, 162820783125, 38979295480125, 1531329465290625, 13447856940643125, 201919571963756521875, 11094481976030578125, 564653660170076273671875, 5660878804669082674070015625, 31245110285511170603633203125
OFFSET
-1,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.70).
G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 19.
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..250 (terms -1..100 from T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.70).
Eric Weisstein's World of Mathematics, Cotangent
FORMULA
cot(x) = Sum_{k>=0} (-1)^k B_{2k} 4^k x^(2k-1) / (2k)!.
a(n) = denominator(A000182(n)/(4^n-1)), n>0.
a(n) = denominator for coth x;
coth(x) = W(0)/x -1, W(k) = k+1+2*x-2*x*(k+1)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2011
coth(x) = Q(0)/(1+x)/x^2 - 1 where Q(k) = 2*k^3 + (2*x+3)*k^2 + (2*x^2+3*x+1)*k + 2*x^3 + 2*x^2 + x - 2*x^2*(k+1)*(2*k+1)*(x+k)*(x+k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 28 2013
a(n) = denominator of 4^(n+1)*Zeta(-2*n-1)/(2*n+1)! for n >= 0. - Peter Luschny, Jun 20 2013
a(n) = denominator(r(n)), with the negative rational numbers r(n) = [x^n]( (cot(sqrt(x))-1/sqrt(x))/sqrt(x)) for n >= 0. - Wolfdieter Lang, Oct 07 2016
EXAMPLE
G.f. = 1/x - (1/3)*x - (1/45)*x^3 - (2/945)*x^5 - (1/4725)*x^7 - (2/93555)*x^9 + O(x^11).
MAPLE
A036278 := n -> `if`(n<0, 1, denom(4^(n+1)*Zeta(-2*n-1)/(2*n+1)!));
seq(A036278(n), n = -1..20); # Peter Luschny, Jun 20 2013
MATHEMATICA
Denominator[Select[List@@Series[Cot[x], {x, 0, 20}][[3]], #!=0&]] (* Harvey P. Dale, Apr 11 2011 *)
a[n_] := (-1)^(n+1)*4^(n+1)*BernoulliB[2*n+2]/(2*n+2)! // Denominator; Table[a[n], {n, -1, 20}] (* Jean-François Alcover, Apr 14 2014, after Peter Luschny *)
PROG
(PARI) apply(r->denominator(r), Vec(1/tan(x))) \\ Charles R Greathouse IV, Apr 14 2014
(PARI) a(n) = denominator((-1)^(n+1)*4^(n+1)*bernfrac(2*n+2)/(2*n+2)!); \\ Altug Alkan, Dec 02 2015
(Python)
from sympy import bernoulli, factorial
def a(n):
return ((-4)**(n + 1)*bernoulli(2*n + 2)/factorial(2*n + 2)).denominator()
print([a(n) for n in range(-1, 20)]) # Indranil Ghosh, Jun 23 2017
(Magma) [Denominator((-1)^(n+1)*4^(n+1)*Bernoulli(2*n+2)/Factorial(2*n+2) ): n in [-1..20]]; // G. C. Greubel, Jul 03 2019
(Sage) [denominator( (-1)^(n+1)*4^(n+1)*bernoulli(2*n+2)/factorial(2*n+2) ) for n in (-1..20)] # G. C. Greubel, Jul 03 2019
(GAP) List([-1..20], n-> DenominatorRat( (-1)^(n+1)*4^(n+1)* Bernoulli(2*n+2)/Factorial(2*n+2) )) # G. C. Greubel, Jul 03 2019
CROSSREFS
Cf. A000182, A002431 (numerators).
Sequence in context: A298799 A202437 A008931 * A225149 A154289 A171080
KEYWORD
nonn,frac,easy,nice
STATUS
approved