login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036278 Denominators in Taylor series for cot x. 4
1, 3, 45, 945, 4725, 93555, 638512875, 18243225, 162820783125, 38979295480125, 1531329465290625, 13447856940643125, 201919571963756521875, 11094481976030578125, 564653660170076273671875, 5660878804669082674070015625, 31245110285511170603633203125 (list; graph; refs; listen; history; text; internal format)
OFFSET

-1,2

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.70).

G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.

H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 19.

LINKS

Seiichi Manyama, Table of n, a(n) for n = -1..250 (terms -1..100 from T. D. Noe)

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.70).

Eric Weisstein's World of Mathematics, Cotangent

FORMULA

cot(x) = Sum_{k>=0} (-1)^k B_{2k} 4^k x^(2k-1) / (2k)!.

a(n) = denominator(A000182(n)/(4^n-1)), n>0.

a(n) same denominator for coth x;

coth(x) = W(0)/x -1, W(k) = k+1+2*x-2*x*(k+1)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2011

coth(x) = Q(0)/(1+x)/x^2 - 1 where Q(k) = 2*k^3 + (2*x+3)*k^2 + (2*x^2+3*x+1)*k + 2*x^3 + 2*x^2 + x - 2*x^2*(k+1)*(2*k+1)*(x+k)*(x+k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Feb 28 2013

a(n) = denominator of 4^(n+1)*Zeta(-2*n-1)/(2*n+1)! for n >= 0. - Peter Luschny, Jun 20 2013

a(n) = denominator(r(n)), with the negative rational numbers r(n) = [x^n]( (cot(sqrt(x))-1/sqrt(x))/sqrt(x)) for n >= 0. - Wolfdieter Lang, Oct 07 2016

EXAMPLE

x^(-1)-1/3*x-1/45*x^3-2/945*x^5-1/4725*x^7-2/93555*x^9+O(x^11).

MAPLE

A036278 := n -> `if`(n<0, 1, denom(4^(n+1)*Zeta(-2*n-1)/(2*n+1)!));

seq(A036278(n), n = -1..15);  # Peter Luschny, Jun 20 2013

MATHEMATICA

Denominator[Select[List@@Series[Cot[x], {x, 0, 40}][[3]], #!=0&]]  (* Harvey P. Dale, Apr 11 2011 *)

a[n_] := (-1)^(n+1)*4^(n+1)*BernoulliB[2*n+2]/(2*n+2)! // Denominator; Table[a[n], {n, -1, 15}] (* Jean-Fran├žois Alcover, Apr 14 2014, after Peter Luschny *)

PROG

(PARI) apply(r->denominator(r), Vec(1/tan(x))) \\ Charles R Greathouse IV, Apr 14 2014

(PARI) a(n) = denominator((-1)^(n+1)*4^(n+1)*bernfrac(2*n+2)/(2*n+2)!); \\  Altug Alkan, Dec 02 2015

(Python)

from sympy import bernoulli, factorial

from fractions import Fraction

def a(n): return Fraction(str((-1)**(n + 1)*4**(n + 1)*bernoulli(2*n + 2)/factorial(2*n + 2))).denominator

print [a(n) for n in xrange(-1, 101)] # Indranil Ghosh, Jun 23 2017

CROSSREFS

Cf. A000182, A002431 (numerators).

Sequence in context: A298799 A202437 A008931 * A225149 A154289 A171080

Adjacent sequences:  A036275 A036276 A036277 * A036279 A036280 A036281

KEYWORD

nonn,frac,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 23:03 EST 2018. Contains 317427 sequences. (Running on oeis4.)