This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002431 Numerators in Taylor series for cot x. (Formerly M0124 N0050) 3
 1, -1, -1, -2, -1, -2, -1382, -4, -3617, -87734, -349222, -310732, -472728182, -2631724, -13571120588, -13785346041608, -7709321041217, -303257395102, -52630543106106954746, -616840823966644, -522165436992898244102, -6080390575672283210764, -10121188937927645176372 (list; graph; refs; listen; history; text; internal format)
 OFFSET -1,4 COMMENTS Can be written as numerators of multiples of Bernoulli numbers. From Wolfdieter Lang, Jun 12 2017: (Start) cot(x) = Sum_{k>=0} r(k-1)*x^(2*k-1), with the rationals r(n) = a(n)/A036278(n), for n >= -1, for 0 < |x| < Pi. coth(x) = Sum_{k>=0} (-1)^k*r(k-1)*x^(2*k-1), for 0 < |x| < Pi. Exercise 2., ch. VI, in Whittaker-Watson, p. 122: 4*int(sin(x*y)/(exp(2*Pi*y)-1) ,y=0..infty) = coth(x/2) - 2/x. Attributed to Legendre. (End) REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.70). G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477. L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88. A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 74. H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1, p. 19. H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 331. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1958, p. 122, Exercise 2. LINKS Seiichi Manyama, Table of n, a(n) for n = -1..313 (terms -1..100 from T. D. Noe) M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.70). Eric Weisstein's World of Mathematics, Cotangent FORMULA a(n) = - numerator(A000182(n)/(4^n-1)) for n>0. cot(x) = Sum_{k>=0} (-1)^k B_{2k} 4^k x^(2k-1) / (2k)!. a(n) = numerator(r(n)), with the negative rational numbers r(n) = [x^n]( (cot(sqrt(x))-1/sqrt(x))/sqrt(x)), n >= 0. - Wolfdieter Lang, Oct 07 2016 EXAMPLE x^(-1)-1/3*x-1/45*x^3-2/945*x^5-1/4725*x^7-2/93555*x^9+O(x^11). MAPLE b := n -> (-1)^n*2^(2*n)*bernoulli(2*n)/(2*n)!; a := n -> numer(b(n+1)); seq(a(i), i=-1..21); # Peter Luschny, Jun 08 2009 MATHEMATICA a[n_] := (-1)^(n+1)*4^(n+1)*BernoulliB[2*n+2]/(2*n+2)! // Numerator; Table[a[n], {n, -1, 21}] (* Jean-François Alcover, Apr 14 2014, after Peter Luschny *) PROG (PARI) apply(r->numerator(r), Vec(1/tan(x))) \\ Charles R Greathouse IV, Apr 14 2014 (PARI) a(n) = numerator((-1)^(n+1)*4^(n+1)*bernfrac(2*n+2)/(2*n+2)!); \\ Altug Alkan, Dec 02 2015 (Python) from sympy import bernoulli, factorial from fractions import Fraction def a(n): return Fraction(str((-1)**(n + 1)*4**(n + 1)*bernoulli(2*n + 2)/factorial(2*n + 2))).numerator print [a(n) for n in xrange(-1, 101)] # Indranil Ghosh, Jun 23 2017 CROSSREFS Cf. A000182, A036278 (denominators). Sequence in context: A010249 A228005 A177438 * A259328 A202034 A062963 Adjacent sequences:  A002428 A002429 A002430 * A002432 A002433 A002434 KEYWORD sign,frac,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 19 17:41 EDT 2018. Contains 313880 sequences. (Running on oeis4.)