The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008931 Expansion of (2/(1+sqrt(1-36*x)))^(1/3). 1
 1, 3, 45, 936, 22572, 592515, 16434495, 473825700, 14058408519, 426438391743, 13164565835421, 412255067017248, 13064028812911440, 418149414542496168, 13498863325944967656, 439006511643775469856, 14369623854340007790108, 473027210589699351461700 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..640 FORMULA From Vladimir Reshetnikov, Oct 12 2016: (Start) a(n) = 9^n*binomial(2*n + 1/3, n)/(6*n + 1). D-finite with recurrence: n*(3*n+1)*a(n) = 6*(18*n^2-21*n+5)*a(n-1). (End) a(n) ~ 2^(2*n-2/3)*3^(2*n-1)/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Oct 13 2016 MAPLE seq(9^n*binomial(2*n +1/3, n)/(6*n+1), n=0..20); # G. C. Greubel, Sep 13 2019 MATHEMATICA CoefficientList[Series[Surd[2/(1+Sqrt[1-36x]), 3], {x, 0, 20}], x] (* Harvey P. Dale, Aug 12 2016 *) Table[9^n Binomial[2 n + 1/3, n]/(6 n + 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 12 2016 *) PROG (PARI) my(x='x+O('x^20)); Vec((2/(1+sqrt(1-36*x)))^(1/3)) \\ G. C. Greubel, Apr 11 2017 (MAGMA) I:=[1]; [n le 1 select I[n] else 6*(5-21*(n-1)+18*(n-1)^2)*Self(n-1)/((n-1)*(3*n-2)): n in [1..20]]; // G. C. Greubel, Sep 13 2019 (Sage) [9^n*binomial(2*n +1/3, n)/(6*n+1) for n in (0..20)] # G. C. Greubel, Sep 13 2019 (GAP) a:=[1];; for n in [2..20] do a[n]:=6*(5-21*(n-1)+18*(n-1)^2)*a[n-1]/((n-1)*(3*n-2)); od; a; # G. C. Greubel, Sep 13 2019 CROSSREFS Sequence in context: A132303 A298799 A202437 * A036278 A225149 A154289 Adjacent sequences:  A008928 A008929 A008930 * A008932 A008933 A008934 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 19:52 EDT 2020. Contains 336256 sequences. (Running on oeis4.)