|
|
A171080
|
|
a(n) = Product_{3 <= q <= 2n+1, q prime} q^floor((2n/(q-1)).
|
|
4
|
|
|
1, 3, 45, 945, 14175, 467775, 638512875, 1915538625, 488462349375, 194896477400625, 32157918771103125, 2218896395206115625, 3028793579456347828125, 9086380738369043484375, 3952575621190533915703125, 28304394023345413370350078125, 7217620475953080409439269921875
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.5.2, p. 13.
|
|
LINKS
|
Table of n, a(n) for n=0..16.
|
|
MAPLE
|
f:=proc(n) local q, t1; t1:=1; for q from 3 to 2*n+1 do if isprime(q) then t1:=t1*q^floor(2*n/(q-1)); fi; od; t1; end;
|
|
MATHEMATICA
|
a[n_] := Product[If[PrimeQ[q], q^Floor[2 n/(q - 1)], 1], {q, 3, 2 n + 1}]
Table[a[n], {n, 0, 20}] (* Wolfgang Hintze, Oct 03 2014 *)
|
|
CROSSREFS
|
Cf. A091137
Sequence in context: A036278 A225149 A154289 * A188681 A012827 A012769
Adjacent sequences: A171077 A171078 A171079 * A171081 A171082 A171083
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Sep 06 2010
|
|
STATUS
|
approved
|
|
|
|