login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024362 Number of primitive Pythagorean triangles with hypotenuse n. 12
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,65

COMMENTS

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times C takes value n.

a(A137409(n)) = 0; a(A008846(n)) > 0; a(A120960(n)) = 1; a(A024409(n)) > 1; a(A159781(n)) = 4. - Reinhard Zumkeller, Dec 02 2012

If the formula given below is used one is sure to find all a(n) values for hypotenuses n <= N if the summation indices r and s are cut off at rmax(N) = floor((sqrt(N-4)+1)/2) and smax(N) = floor(sqrt(N-1)/2). a(n) is the number of primitive Pythagorean triples with hypotenuse n modulo catheti exchange. - Wolfdieter Lang, Jan 10 2016

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 116-117, 1966.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Ron Knott, Pythagorean Triples and Online Calculators

Eric Weisstein's World of Mathematics, Pythagorean Triple

FORMULA

a(n) = [q^n] T(q), n >= 1, where T(q) = Sum_{r>=1,s>=1} rpr(2*r-1, 2*s)*q^c(r,s), with rpr(k,l) = 1 if GCD(k,l) = 1 else 0, and  c(r,s) = (2*r-1)^2 + (2s)^2. - Wolfdieter Lang, Jan 10 2016

If all prime factors of n are in A002144 then a(n) = 2^(A001221(n)-1), else a(n) = 0. - Robert Israel, Jan 11 2016

MAPLE

f:= proc(n) local F;

   F:= numtheory:-factorset(n);

   if map(t -> t mod 4, F) <> {1} then return 0 fi;

   2^(nops(F)-1)

end proc:

seq(f(n), n=1..100); # Robert Israel, Jan 11 2016

MATHEMATICA

Table[a0=IntegerExponent[n, 2]; If[n==1 || a0>0, cnt=0, m=n/2^a0; p=Transpose[FactorInteger[m]][[1]]; c=Count[p, _?(Mod[#, 4]==1 &)]; If[c==Length[p], cnt=2^(c-1), 0]]; cnt, {n, 100}]

PROG

(Haskell)

a024362 n = sum [a010052 y | x <- takeWhile (< nn) $ tail a000290_list,

                             let y = nn - x, y <= x, gcd x y == 1]

            where nn = n ^ 2

-- Reinhard Zumkeller, Dec 02 2012

(PARI) a(n)={my(m=0, k=n, n2=n*n, k2, l2);

while(1, k=k-1; k2=k*k; l2=n2-k2; if(l2>k2, break); if(issquare(l2), if(gcd(n, k)==1, m++)));  return(m); } \\ Stanislav Sykora, Mar 23 2015

CROSSREFS

Cf. A020882, A024361, A046079, A046080.

Cf. A000290, A010052.

Cf. A001221, A002144.

Sequence in context: A114099 A028613 A245515 * A104488 A244413 A056626

Adjacent sequences:  A024359 A024360 A024361 * A024363 A024364 A024365

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 01:25 EDT 2017. Contains 292500 sequences.