login
A024360
Number of primitive Pythagorean triangles with long leg n.
4
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
1,420
COMMENTS
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times B takes value n.
Number of times n occurs in A020883.
FORMULA
a(n) = A024361(n) - A024359(n). - Ray Chandler, Feb 03 2020
MATHEMATICA
A[s_] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[Import[ "https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[;; 10000, 2]]];
A@024361 - A@024359 (* Jean-François Alcover, Mar 27 2020 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved