login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024363
Number of primitive Pythagorean triangles with side n.
7
0, 0, 1, 1, 2, 0, 1, 1, 1, 0, 1, 2, 2, 0, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 2, 2, 0, 1, 1, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 4, 2, 0, 2, 1, 4, 0, 1, 2, 2, 0, 1, 2, 2, 0, 2, 2, 2, 0, 1, 2, 1, 0, 1, 4, 4, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2
OFFSET
1,5
COMMENTS
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times AUBUC takes value n.
Using Euclidean parameters (x, y) with x > y to generate primitive Pythagorean triples to capture all occurrences of side n, the Mma program below must allow the x parameter to iterate at least (n+1)/2 times. - Frank M Jackson, Jun 12 2017
FORMULA
a(n)=0 for n=1 and n=2 (mod 4)=A016825. a(n)=A024361(n)+A024362(n). - Lekraj Beedassy, Dec 01 2003
MATHEMATICA
lst={}; xmax=51; Do[If[GCD[x, y]==1&&OddQ[x+y], AppendTo[lst, Sort@{x^2-y^2, 2 x*y, x^2+y^2}]], {x, xmax}, {y, x}]; BinCounts[Select[Flatten@lst, #<2xmax &], {1, 2(xmax-1), 1}] (* or *)
a[n_] := Block[{x, y, s = List@ ToRules@ Reduce[(x^2-y^2 == n^2 || x^2 + y^2 == n^2) && x>y>0, {x, y}, Integers]}, If[s == {}, 0, Length@ Select[ {x, y} /. s, GCD @@ # == 1 &]]]; Array[a, 99] (* Giovanni Resta, Jun 19 2017 *)
CROSSREFS
Sequence in context: A213629 A357380 A278522 * A050600 A129691 A280750
KEYWORD
nonn
STATUS
approved