login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213629 In binary representation: T(n,k) = number of (possibly overlapping) occurrences of k in n, triangle read by rows, 1<=k<=n. 11
1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 3, 0, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 1, 2, 2, 0, 0, 1, 0, 0, 0, 0, 1, 3, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 3, 1, 1, 0, 1, 1, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The definition is based on the definition of pattern functions in the paper of Allouche and Shallit;

sum of n-th row = A029931(n);

T(n,1) = A000120(n);

T(n,2) = A033264(n) for n > 1;

T(n,3) = A014081(n) for n > 2;

T(n,4) = A056978(n) for n > 3;

T(n,5) = A056979(n) for n > 4;

T(n,6) = A056980(n) for n > 5;

T(n,7) = A014082(n) for n > 6;

T(n,k) = 0 for k with floor(n/2) < k < n;

T(n,n) = 1;

A122953(n) = sum (A057427(T(n,k): k=1..n);

A005811(n) = T(n,1) + T(n,2) - T(n,3);

A007302(n) = A000120(n) - sum (A213629(n,A136412(k))).

LINKS

Reinhard Zumkeller, Rows n = 1..150 of triangle, flattened

J.-P. Allouche, J. Shallit, The Ring of k-regular Sequences II, Example 4, p. 12

Index entries for sequences related to binary expansion of n

EXAMPLE

The triangle begins:

.   1:                        1

.   2:                      1   1

.   3:                    2   0   1

.   4:                  1   1   0   1

.   5:                2   1   0   0   1

.   6:              2   1   1   0   0   1

.   7:            3   0   2   0   0   0   1

.   8:          1   1   0   1   0   0   0   1

.   9:        2   1   0   1   0   0   0   0   1

.  10:      2   2   0   0   1   0   0   0   0   1

.  11:    3   1   1   0   1   0   0   0   0   0   1

.  12:  2   1   1   1   0   1   0   0   0   0   0   1.

MATHEMATICA

t[n_, k_] := (idn = IntegerDigits[n, 2]; idk = IntegerDigits[k, 2]; ln = Length[idn]; lk = Length[idk]; For[cnt = 0; i = 1, i <= ln - lk + 1, i++, If[idn[[i ;; i + lk - 1]] == idk, cnt++]]; cnt); Table[t[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Oct 22 2012 *)

PROG

(Haskell)

import Data.List (inits, tails, isPrefixOf)

a213629 n k = a213629_tabl !! (n-1) !! (k-1)

a213629_row n = a213629_tabl !! (n-1)

a213629_tabl = map f $ tail $ inits $ tail $ map reverse a030308_tabf where

   f xss = map (\xs ->

           sum $ map (fromEnum . (xs `isPrefixOf`)) $ tails $ last xss) xss

CROSSREFS

Cf. A030308, A007088.

Sequence in context: A105553 A262696 A117165 * A278522 A024363 A050600

Adjacent sequences:  A213626 A213627 A213628 * A213630 A213631 A213632

KEYWORD

nonn,base,tabl

AUTHOR

Reinhard Zumkeller, Jun 17 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 07:26 EDT 2018. Contains 313756 sequences. (Running on oeis4.)