login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024361 Number of primitive Pythagorean triangles with leg n. 12
0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 2, 2, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 1, 0, 2, 2, 2, 0, 1, 4, 1, 0, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 1, 0, 2, 2, 2, 0, 1, 2, 1, 0, 1, 4, 2, 0, 2, 2, 1, 0, 2, 2, 2, 0, 2, 2, 1, 0, 2, 2, 1, 0, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,12
COMMENTS
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times A or B takes value n.
For n > 1, a(n) = 0 for n == 2 (mod 4) (n in A016825).
From Jianing Song, Apr 23 2019: (Start)
Note that all the primitive Pythagorean triangles are given by A = min{2*u*v, u^2 - v^2}, B = max{2*u*v, u^2 - v^2}, C = u^2 + v^2, where u, v are coprime positive integers, u > v and u - v is odd. As a result:
(a) if n is odd, then a(n) is the number of representations of n to the form n = u^2 - v^2, where u, v are coprime positive integers (note that this guarantees that u - v is odd) and u > v. Let s = u + v, t = u - v, then n = s*t, where s and t are unitary divisors of n and s > t, so the number of representations is A034444(n)/2 if n > 1 and 0 if n = 1;
(b) if n is divisible by 4, then a(n) is the number of representations of n to the form n = 2*u*v, where u, v are coprime positive integers (note that this also guarantees that u - v is odd because n/2 is even) and u > v. So u and v must be unitary divisors of n/2, so the number of representations is A034444(n/2)/2. Since n is divisible by 4, A034444(n/2) = A034444(n) so a(n) = A034444(n)/2.
(c) if n == 2 (mod 4), then n/2 is odd, so n = 2*u*v implies that u and v are both odd, which is not acceptable, so a(n) = 0.
a(n) = 0 if n = 1 or n == 2 (mod 4), otherwise a(n) is a power of 2.
The earliest occurrence of 2^k is 2*A002110(k+1) for k > 0. (End)
LINKS
J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
Amitabha Tripathi, On Pythagorean triples containing a fixed integer, Fibonacci Quart. 46/47 (2008/09), no. 4, 331-340.
Eric Weisstein's World of Mathematics, Pythagorean Triple
FORMULA
a(n) = A034444(n)/2 = 2^(A001221(n)-1) if n != 2 (mod 4) and n > 1, a(n) = 0 otherwise. - Jianing Song, Apr 23 2019
a(n) = A024359(n) + A024360(n). - Ray Chandler, Feb 03 2020
EXAMPLE
a(12) = 2 because 12 appears twice, in (A,B,C) = (5,12,13) and (12,35,37).
MATHEMATICA
Table[If[n == 1 || Mod[n, 4] == 2, 0, 2^(Length[FactorInteger[n]] - 1)], {n, 100}]
PROG
(PARI) A024361(n) = if(1==n||(2==(n%4)), 0, 2^(omega(n)-1)); \\ (after the Mathematica program) - Antti Karttunen, Nov 10 2018
CROSSREFS
Sequence in context: A096419 A283616 A130182 * A305614 A190676 A329308
KEYWORD
nonn
AUTHOR
EXTENSIONS
Incorrect comment removed by Ant King, Jan 28 2011
More terms from Antti Karttunen, Nov 10 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 19:02 EDT 2024. Contains 371798 sequences. (Running on oeis4.)