login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A024359
Number of primitive Pythagorean triangles with short leg n.
8
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 1, 1, 2, 0, 1, 3, 1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 1, 3, 2, 0, 2
OFFSET
1,20
COMMENTS
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives number of times A takes value n.
Number of times n occurs in A020884.
a(A139544(n)) = 0; a(A024352(n)) > 0. - Reinhard Zumkeller, Nov 09 2012
FORMULA
a(n) = A024361(n) - A024360(n). - Ray Chandler, Feb 03 2020
MATHEMATICA
solns[a_] := Module[{b, c, soln}, soln = Reduce[a^2 + b^2 == c^2 && a < b && c > 0 && GCD[a, b, c] == 1, {b, c}, Integers]; If[soln === False, 0, If[soln[[1, 1]] === b, 1, Length[soln]]]]; Table[solns[n], {n, 100}]
(* Second program: *)
a[n_] := Module[{s = 0, b, c, d, g}, Do[g = Quotient[n^2, d]; If[d <= g && Mod[d+g, 2] == 0, c = Quotient[d+g, 2]; b = g-c; If[n < b && GCD[b, c] == 1, s++]], {d, Divisors[n^2]}]; s]; Array[a, 100] (* Jean-François Alcover, Apr 27 2019, from PARI *)
PROG
(Haskell)
a024359_list = f 0 1 a020884_list where
f c u vs'@(v:vs) | u == v = f (c + 1) u vs
| u /= v = c : f 0 (u + 1) vs'
-- Reinhard Zumkeller, Nov 09 2012
(PARI)
nppt(a) = {
my(s=0, b, c, d, g);
fordiv(a^2, d,
g=a^2\d;
if(d<=g && (d+g)%2==0,
c=(d+g)\2; b=g-c;
if(a<b && gcd(b, c)==1, s++)
)
);
s
}
vector(100, n, nppt(n)) \\ Colin Barker, Oct 25 2015
CROSSREFS
Cf. A020884, A024352, A024360, A024361, A132404 (where records occur), A139544.
Sequence in context: A131038 A016353 A016398 * A354512 A088705 A065712
KEYWORD
nonn
STATUS
approved