This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024356 Determinant of Hankel matrix of the first 2n-1 prime numbers. 5
 1, 2, 1, -2, 0, 288, -1728, -26240, 222272, 1636864, -8434688, -61820416, 238704640, 544024576, 3294658560, -71814283264, 359994671104, 17294535000064, 302441193013248, -2311203985948672, -11313883306262528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Determinant of n X n matrix with entries prime(X+Y-1). a(0) = 1 by convention. I conjecture that a(4) is the only zero. - Jon Perry, Mar 22 2004 LINKS K. Brockhaus, Table of n, a(n) for n = 0..200 [From Klaus Brockhaus, May 12 2010] EXAMPLE a(2) = 1 because det[[2,3],[3,5]] = 1 From Klaus Brockhaus, May 12 2010: (Start) a(5) = determinant(M) = 288 where M is the matrix [ 2  3  5  7 11] [ 3  5  7 11 13] [ 5  7 11 13 17] [ 7 11 13 17 19] [11 13 17 19 23] . (End) PROG (PARI) for (i=0, 20, print1(", "matdet(matrix(i, i, X, Y, prime(X+Y-1))))) (Perry) From Klaus Brockhaus, May 12 2010: (Start) (MAGMA) Hankel_prime:=function(n); M:=ScalarMatrix(n, 0); for j in [1..n] do for k in [1..n] do M[j, k]:=NthPrime(j+k-1); end for; end for; return M; end function; [ Determinant(Hankel_prime(n)): n in [0..22] ]; [1] cat [ Determinant( SymmetricMatrix( &cat[ [ NthPrime(j+k-1): k in [1..j] ]: j in [1..n] ] ) ): n in [1..22] ]; (End) CROSSREFS Cf. A290302. Sequence in context: A121310 A278158 A218880 * A143947 A226518 A073781 Adjacent sequences:  A024353 A024354 A024355 * A024357 A024358 A024359 KEYWORD sign AUTHOR Jeffrey Shallit, Jun 08 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 04:21 EST 2019. Contains 320411 sequences. (Running on oeis4.)