login
A096419
Number of cyclically symmetric plane partitions (Macdonald's plane partition conjecture).
4
1, 0, 0, 1, 0, 0, 2, 1, 0, 2, 1, 0, 4, 3, 0, 5, 4, 0, 8, 8, 0, 10, 11, 0, 15, 19, 1, 20, 27, 1, 28, 43, 3, 36, 61, 6, 50, 92, 11, 64, 129, 18, 86, 189, 33, 110, 262, 51, 145, 374, 84, 184, 514, 129, 238, 718, 201, 300, 977, 300, 384, 1344, 454, 482, 1812, 661, 609, 2459, 972
OFFSET
1,7
COMMENTS
Equals A048141 (C3v symmetry) + 2* A048142 (only C3 symmetry).
REFERENCES
Andrews, G. E. "Plane Partitions (III): The Weak Macdonald Conjecture." Invent. Math. 53, 193-225, 1979.
Mills, W. H.; Robbins, D. P.; and Rumsey, H. Jr., Proof of the Macdonald Conjecture. Invent. Math. 66, 73-87, 1982.
LINKS
Eric Weisstein's World of Mathematics, Macdonald's Plane Partition Conjecture
FORMULA
See Mathematica code for a formula.
MATHEMATICA
mcdon=Rest@CoefficientList[Series[Product[(1-q^(3i-1))/(1-q^(3i-2)) Product[(1-q^(3(m+i+j-1)))/(1-q^(3(2i+j-1))), {j, i, m}], {i, 1, m}]/.m->50, {q, 0, 97}], q]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Aug 08 2004
STATUS
approved