login
A096418
Decimal expansion of Sum_{k >= 1} sin(k)/k^2.
7
1, 0, 1, 3, 9, 5, 9, 1, 3, 2, 3, 6, 0, 7, 6, 8, 5, 0, 4, 2, 9, 4, 5, 7, 4, 3, 3, 8, 8, 8, 5, 9, 1, 4, 6, 8, 7, 5, 6, 1, 1, 7, 9, 2, 8, 0, 0, 7, 7, 7, 1, 7, 3, 1, 6, 8, 7, 7, 0, 4, 8, 5, 1, 2, 2, 6, 8, 1, 3, 7, 8, 1, 2, 3, 4, 6, 0, 7, 9, 5, 5, 7, 3, 3, 6, 3, 8, 8, 2, 1, 8, 6, 5, 4, 7, 7, 1, 2, 2, 0, 4, 2, 1, 5, 7
OFFSET
1,4
COMMENTS
Also, decimal expansion of the imaginary part of Sum_{k>=1} e^(i*k)/k^2. [Bruno Berselli, Mar 24 2013]
LINKS
I. Rosenholtz, Tangent sequences, world records, ..., Math. Mag., 72 (No. 5, 1999), 367-376.
EXAMPLE
1.013959132360768504294574338885914687561179280077717316877048512268137...
MATHEMATICA
$MaxExtraPrecision = 128; RealDigits[ Chop[ N[ I/2*(PolyLog[2, E^-I] - PolyLog[2, E^I]), 105]]][[1]] (* Robert G. Wilson v, Aug 16 2004 *)
PROG
(PARI) imag(polylog(2, exp(I))) \\ Charles R Greathouse IV, Jul 14 2014
CROSSREFS
Cf. A122143 (decimal expansion of Sum_{k >= 1} cos(k)/k^2).
Sequence in context: A199053 A200595 A197023 * A100811 A223652 A077383
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Aug 16 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 17 2004
Sequence checked by T. D. Noe, Aug 21 2006
STATUS
approved