login
A337548
Number of compositions (ordered partitions) of n into distinct parts congruent to 2 mod 3.
7
1, 0, 1, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 4, 1, 6, 4, 1, 6, 6, 1, 12, 6, 1, 18, 8, 25, 24, 8, 25, 30, 10, 49, 42, 10, 73, 48, 12, 121, 60, 132, 145, 72, 134, 217, 84, 254, 265, 96, 376, 361, 114, 616, 433, 126, 858, 553, 864, 1218, 649, 882, 1580, 817, 1620, 2180, 937
OFFSET
0,8
FORMULA
G.f.: Sum_{k>=0} k! * x^(k*(3*k + 1)/2) / Product_{j=1..k} (1 - x^(3*j)).
EXAMPLE
a(15) = 6 because we have [8, 5, 2], [8, 2, 5], [5, 8, 2], [5, 2, 8], [2, 8, 5] and [2, 5, 8].
MATHEMATICA
nmax = 65; CoefficientList[Series[Sum[k! x^(k (3 k + 1)/2)/Product[1 - x^(3 j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 22 2020
STATUS
approved