login
A160753
Binary expansion of the Chaitin halting probability Omega_L for a certain programming language L.
0
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0
OFFSET
0,1
COMMENTS
If this sequence were extended to 5000 terms, it would settle the Riemann hypothesis.
REFERENCES
C. S. Calude, E. Calude and M. J. Dinneen, A new measure of the difficulty of problems, J. Mult.-Valued Logic Soft. Comput., 12 (2006), 285-307.
C. S. Calude and M. J. Dinneen, Exact approximations of omega numbers, Internat. J. Bifur. Chaos, 17 (6) (2007), 1937-1954.
LINKS
C. S. Calude, E. Calude and M. J. Dinneen, A new measure of the difficulty of problems, CDMTCS Research Reports CDMTCS-277 (2006).
C. S. Calude and G. J. Chaitin, What is ... a Halting Probability?, Notices Amer. Math. Soc., 57 (No. 2, 2010), 236-237.
C. S. Calude and M. J. Dinneen, Exact approximations of omega numbers, CDMTCS Research Reports CDMTCS-293 (2006).
CROSSREFS
Cf. A079365.
Sequence in context: A281302 A369426 A340599 * A328981 A369070 A024360
KEYWORD
nonn,hard,more
AUTHOR
N. J. A. Sloane, Jan 29 2010
STATUS
approved