The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046080 a(n) = number of integer-sided right triangles with hypotenuse n. 46
 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,25 COMMENTS a(n) = 0 for n in A004144. - Lekraj Beedassy, May 14 2004 Or number of ways n^2 can be written as the sum of two positive squares: a(5) = 1: 3^2 + 4^2 = 5^2; a(25) = 2: 7^2 + 24^2 = 15^2 + 20^2 = 25^2. - Alois P. Heinz, Aug 01 2019 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, New York: Dover, pp. 116-117, 1966. LINKS Stanislav Sykora, Table of n, a(n) for n = 1..20000 Ron Knott, Pythagorean Triples and Online Calculators F. Richman, Pythagorean Triples A. Tripathi, On Pythagorean triples containing a fixed integer, Fib. Q., 46/47 (2008/2009), 331-340. See Theorem 7. Eric Weisstein's World of Mathematics, Pythagorean Triple FORMULA Let n = 2^e_2 * product_i p_i^f_i * product_j q_j^g_j where p_i == 1 mod 4, q_j == 3 mod 4; then a(n) = (1/2)*(product_i (2*f_i + 1) - 1). - Beiler, corrected 8*a(n) + 4 = A046109(n) for n > 0. - Ralf Stephan, Mar 14 2004 a(A084647(k)) = 3. - Jean-Christophe Hervé, Dec 01 2013 a(A084648(k)) = 4. - Jean-Christophe Hervé, Dec 01 2013 a(A084649(k)) = 5. - Jean-Christophe Hervé, Dec 01 2013 a(n) = A063725(n^2) / 2. - Michael Somos, Mar 29 2015 MAPLE f:= proc(n) local F, t;   F:= select(t -> t[1] mod 4 = 1, ifactors(n)[2]);   1/2*(mul(2*t[2]+1, t=F)-1) end proc: map(f, [\$1..100]); # Robert Israel, Jul 18 2016 MATHEMATICA a[1] = 0; a[n_] := With[{fi = Select[ FactorInteger[n], Mod[#[[1]], 4] == 1 & ][[All, 2]]}, (Times @@ (2*fi+1)-1)/2]; Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Feb 06 2012, after first formula *) PROG (PARI) a(n)={my(m=0, k=n, n2=n*n, k2, l2); while(1, k=k-1; k2=k*k; l2=n2-k2; if(l2>k2, break); if(issquare(l2), m++)); return(m)} \\ brute force, Stanislav Sykora, Mar 18 2015 (PARI) {a(n) = if( n<1, 0, sum(k=1, sqrtint(n^2 \ 2), issquare(n^2 - k^2)))}; /* Michael Somos, Mar 29 2015 */ (PARI) a(n) = {my(f = factor(n/(2^valuation(n, 2)))); (prod(k=1, #f~, if ((f[k, 1] % 4) == 1, 2*f[k, 2] + 1, 1)) - 1)/2; } \\ Michel Marcus, Mar 08 2016 CROSSREFS First differs from A083025 at n=65. Cf. A000290, A006339, A024362, A046079, A046081, A024362, A009000. A088111 gives records; A088959 gives where records occur. Cf. A063725. Partial sums: A224921. Sequence in context: A088950 A267113 A083025 * A170967 A035227 A049340 Adjacent sequences:  A046077 A046078 A046079 * A046081 A046082 A046083 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 11:42 EDT 2020. Contains 336198 sequences. (Running on oeis4.)