login
A137409
Numbers that cannot be the value of 'C' in a primitive Pythagorean triple (A < B; A^2 + B^2 = C^2).
8
1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
OFFSET
1,2
COMMENTS
Complement of A008846. - R. J. Mathar, Aug 15 2010
A024362(a(n)) = 0. - Reinhard Zumkeller, Dec 02 2012
Except for the 1st term 1, complement of A004613. - Federico Provvedi, Jan 26 2019
After 1, numbers k for which A065338(k) > 1, i.e., after 1, numbers all of whose prime divisors are not of the form 4u+1. - Antti Karttunen, Dec 26 2020
LINKS
EXAMPLE
3,4,5; number 5 is not in this sequence.
5,12,13; number 13 is not in this sequence.
8,15,17; number 17 is not in this sequence.
7,24,25; number 25 is not in this sequence.
MATHEMATICA
okQ[1] = True;
okQ[n_] := AnyTrue[FactorInteger[n][[All, 1]], Mod[#, 4] != 1&];
Select[Range[100], okQ] (* Jean-François Alcover, Mar 10 2019, after Federico Provvedi's comment *)
PROG
(Haskell)
import Data.List (elemIndices)
a137409 n = a137409_list !! (n-1)
a137409_list = map (+ 1) $ elemIndices 0 a024362_list
-- Reinhard Zumkeller, Dec 02 2012
(PARI)
A065338(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = (f[i, 1]%4)); factorback(f); };
isA137409(n) = ((1==n)||(A065338(n)>1)); \\ Antti Karttunen, Dec 26 2020
CROSSREFS
Subsequences: A125667 (the odd terms), A339875.
Sequence in context: A350757 A004776 A187945 * A037041 A048263 A141451
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by R. J. Mathar, Aug 15 2010
STATUS
approved