login
A137411
Weak Goodstein sequence starting at 11.
13
11, 30, 67, 127, 217, 343, 511, 636, 775, 928, 1095, 1276, 1471, 1680, 1903, 2139, 2389, 2653, 2931, 3223, 3529, 3849, 4183, 4531, 4893, 5269, 5659, 6063, 6481, 6913, 7359, 7818, 8291, 8778, 9279, 9794, 10323, 10866, 11423, 11994, 12579, 13178
OFFSET
2,1
COMMENTS
The sequence eventually goes to zero, as can be seen by noting that multiples of the highest exponent (3 in this case) only go down; in fact the 8th term, a(8) = 7*8^2 + 7*8 + 7 = 511; after which the multiple of the square term will only go down, etc.
This sequence, for 11, grows beyond the quintillions of digits before going to zero.
REFERENCES
K. Hrbacek & T. Jech, Introduction to Set Theory, Taylor & Francis Group, 1999, pp. 125-127.
LINKS
FORMULA
To obtain a(n + 1), write a(n) in base n, increase the base to n + 1 and subtract 1.
EXAMPLE
a(2) = 11 = 2^3 + 2^1 + 2^0
a(3) = 3^3 + 3^1 + 3^0 - 1 = 30
a(4) = 4^3 + 4^1 - 1 = 4^3 + 3*4^0 = 67
MATHEMATICA
nxt[{n_, a_}]:={n+1, FromDigits[IntegerDigits[a, n+1], n+2]-1}; Transpose[ NestList[ nxt, {1, 11}, 50]][[2]] (* Harvey P. Dale, Feb 09 2015 *)
CROSSREFS
Cf. A056004 (strong Goodstein sequences), A059933 (strong Goodstein sequence for 16.).
Sequence in context: A051682 A109943 A303856 * A002755 A346852 A157827
KEYWORD
nonn
AUTHOR
Nicholas Matteo (kundor(AT)kundor.org), Apr 15 2008
STATUS
approved