login
A137412
a(1)=0. If a(m) is odd, then a(2^(m-1)+k) = a(k)-1, for all k where 1<=k<=2^(m-1). If a(m) is even, then a(2^(m-1)+k) = a(k)+1, for all k where 1<=k<=2^(m-1).
1
0, 1, -1, 0, -1, 0, -2, -1, 1, 2, 0, 1, 0, 1, -1, 0, -1, 0, -2, -1, -2, -1, -3, -2, 0, 1, -1, 0, -1, 0, -2, -1, 1, 2, 0, 1, 0, 1, -1, 0, 2, 3, 1, 2, 1, 2, 0, 1, 0, 1, -1, 0, -1, 0, -2, -1, 1, 2, 0, 1, 0, 1, -1, 0, 1, 2, 0, 1, 0, 1, -1, 0, 2, 3, 1, 2, 1, 2, 0, 1, 0, 1, -1, 0, -1, 0, -2, -1, 1, 2, 0, 1, 0, 1, -1, 0, 2, 3, 1, 2, 1, 2, 0, 1, 3, 4, 2, 3, 2, 3, 1, 2, 1, 2
OFFSET
1,7
FORMULA
a(n) = 1 - A104145(n). - Leroy Quet, Apr 22 2008
EXAMPLE
Starting with a(1) = 1 instead gets sequence A104145.
CROSSREFS
Cf. A104145.
Sequence in context: A236074 A099916 A099917 * A355913 A373605 A025925
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Apr 15 2008
STATUS
approved