login
A023052
Perfect Digital Invariants: numbers that are the sum of some fixed power of their digits.
33
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153
OFFSET
1,3
COMMENTS
The old name was "Powerful numbers, definition (3)". Cf. A001694, A007532. - N. J. A. Sloane, Jan 16 2022.
Randle has suggested that these numbers be called "powerful", but this usually refers to a distinct property related to prime factorization, cf. A001694, A036966, A005934.
Numbers m such that m = Sum_{i=1..k} d(i)^s for some s, where d(1..k) are the decimal digits of m.
Superset of A005188 (Plusperfect, narcissistic or Armstrong numbers: s=k), A046197 (s=3), A052455 (s=4), A052464 (s=5), A124068 (s=6, 7), A124069 (s=8). - R. J. Mathar, Jun 15 2009, Jun 22 2009
LINKS
Jerome Raulin, Table of n, a(n) for n = 1..345 (terms 1..255 from Joseph Myers)
Encyclopaedia Britannica, Perfect digital invariant, article "Number patterns and curiosities" online since July 26, 1999, revised Aug 25, 2000.
Donald E. Knuth, The Art of Computer Programming, Volume 4, Pre-Fascicle 9B A Potpourri of Puzzles
J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383.
J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Narcissistic Number
EXAMPLE
153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
MATHEMATICA
Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
PROG
(PARI) is(n)=if(n<10, return(1)); my(d=digits(n), m=vecmax(d)); if(m<2, return(0)); for(k=3, logint(n, m), if(sum(i=1, #d, d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
(PARI) select( is_A023052(n, b=10)={n<b|| forstep(p=logint(n, max(vecmax(b=digits(n, b)), 2)), 2, -1, my(t=vecsum([d^p|d<-b])); t>n|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
CROSSREFS
Cf. A001694 (powerful numbers: p|n => p^2|n), A005934 (highly powerful numbers).
Cf. A005188 (here the power must be equal to the number of digits).
In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A162234 (base 9).
Sequence in context: A032561 A342157 A306360 * A005188 A032569 A343036
KEYWORD
nonn,base,nice
EXTENSIONS
Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
A-number typo corrected by R. J. Mathar, Jun 22 2009
Computed to 10^105 by Joseph Myers
Cross-references edited by Joseph Myers, Jun 28 2009
Edited by M. F. Hasler, Nov 21 2019
STATUS
approved