

A162222


Base 5 perfect digital invariants (written in base 10): numbers equal to the sum of the kth powers of their base5 digits, for some k.


11



0, 1, 2, 3, 4, 13, 18, 28, 118, 257, 289, 308, 353, 419, 4890, 4891, 9113, 16387, 66562, 322217, 1874374, 172449032, 268533762, 338749352, 2204944815, 2204944816, 2415951874, 3250054360, 3250054361, 3264337734, 4424304070, 4424304071
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Whenever a(n) is a multiple of 5, then a(n+1) = a(n) + 1 is also a base 5 perfect digital invariant, with the same exponent k.  M. F. Hasler, Nov 21 2019


LINKS

Joseph Myers, Table of n, a(n) for n=1..1640 (complete to 700 base 5 digits)


PROG

(PARI) select( {is_A162222(n, b=5)=n<bforstep(k=logint(n, max(vecmax(b=digits(n, b)), 2)), 2, 1, my(t=vecsum([d^kd<b])); t>nreturn(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019


CROSSREFS

Cf. A162223 (corresponding exponents), A010346 (restriction to power = number of digits), A033837, A162224. In other bases: A162216 (base 3), A162219 (base 4), A162225 (base 6), A162228 (base 7), A162231 (base 8), A162234 (base 9), A023052 (base 10).
Sequence in context: A281512 A295396 A236440 * A010346 A295621 A295755
Adjacent sequences: A162219 A162220 A162221 * A162223 A162224 A162225


KEYWORD

base,nonn


AUTHOR

Joseph Myers, Jun 28 2009


STATUS

approved



