login
A162234
Base 9 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-9 digits, for some k.
11
0, 1, 2, 3, 4, 5, 6, 7, 8, 27, 28, 41, 50, 126, 127, 243, 244, 353, 468, 469, 1052, 1824, 2187, 2188, 8052, 8295, 9857, 19683, 19684, 36804, 65538, 65539, 177147, 177148, 1198372, 1594323, 1594324, 3357009, 3357010, 5300099, 6287267, 10097892
OFFSET
1,3
COMMENTS
Whenever a(n) is a multiple of 9, then a(n+1) = a(n) + 1 is also a base 9 perfect digital invariant, with the same exponent k. - M. F. Hasler, Nov 21 2019
LINKS
Joseph Myers, Table of n, a(n) for n=1..506 (complete to 120 base 9 digits)
PROG
(PARI) select( {is_A162234(n, b=9)=n<b|| forstep(p=logint(n, max(vecmax(b=digits(n, b)), 2)), 2, -1, my(t=vecsum([d^p|d<-b])); t>n|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
CROSSREFS
Cf. A162235 (corresponding exponents), A010353 (restriction to power = number of digits), A033841, A162236. In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A023052 (base 10).
Sequence in context: A335900 A096986 A031097 * A024651 A004848 A183531
KEYWORD
base,nonn
AUTHOR
Joseph Myers, Jun 28 2009
STATUS
approved