login
A162228
Base 7 perfect digital invariants (written in base 10): numbers equal to the sum of the k-th powers of their base-7 digits, for some k.
11
0, 1, 2, 3, 4, 5, 6, 9, 10, 16, 25, 32, 45, 65, 133, 134, 152, 250, 1542, 3190, 3222, 3612, 3613, 4183, 9286, 35411, 37271, 72865, 191334, 193393, 376889, 535069, 794376, 1110699, 2236488, 3021897, 4431562, 8094840, 9885773, 10883814, 16219922
OFFSET
1,3
COMMENTS
Whenever a(n) is a multiple of 7, then a(n+1) = a(n) + 1 is also a base 7 perfect digital invariant, with the same exponent k. - _M. F. Hasler, Nov 21 2019_
LINKS
Joseph Myers, Table of n, a(n) for n=1..868 (complete to 200 base 7 digits)
PROG
(PARI) select( {is_A162228(n, b=7)=n<b||forstep(k=logint(n, max(vecmax(b=digits(n, b)), 2)), 2, -1, my(s=vecsum([d^k|d<-b])); s>n||return(s==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
CROSSREFS
Cf. A162229 (corresponding exponents), A010350 (restriction to power = number of digits), A033839, A162230. In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162231 (base 8), A162234 (base 9), A023052 (base 10).
Sequence in context: A153013 A052492 A339454 * A085714 A240093 A286421
KEYWORD
base,nonn
AUTHOR
Joseph Myers, Jun 28 2009
STATUS
approved