login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007532 Handsome numbers: sum of positive powers of its digits; a(n) = Sum_{i=1..k} d[i]^e[i] where d[1..k] are the decimal digits of a(n), e[i] > 0.
(Formerly M0487)
16
1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 43, 63, 89, 132, 135, 153, 175, 209, 224, 226, 262, 264, 267, 283, 332, 333, 334, 357, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 407, 445, 463, 518, 598, 629, 739, 794, 849, 935, 994, 1034 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The previous name was "Powerful numbers, Definition (2). Cf. A001694, A023052. - N. J. A. Sloane, Jan 16 2022

J. Randle has suggested the name "powerful numbers" for the perfect digital invariants A023052, equal to the sum of a fixed power of the digits. However, "powerful" usually refers to a prime factorization related property, cf. A001694 (and references there as well as on the MathWorld page). C. Rivera has suggested the name "handsome" for these numbers (in view of narcissistic numbers A005188) in his prime puzzle #15: see also contributed comments concerning terminology on that page. - M. F. Hasler, Nov 21 2019

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

David W. Wilson, Table of n, a(n) for n = 1..10000

Giovanni Resta, d-powerful numbers, the 30067 terms and sums up to 10^6.

Carlos Rivera, Puzzle 15.- Narcissistic and Handsome Primes, The Prime Puzzles and Problems Connection.

Eric Weisstein's World of Mathematics, Powerful Number.

Index entries for sequences related to powerful numbers

FORMULA

If n = d_1 d_2 ... d_k in decimal, then there are integers m_1, m_2, ..., m_k > 0 such that n = d_1^m_1 + ... + d_k^m_k.

EXAMPLE

43 = 4^2 + 3^3 is OK; 254 = 2^7 + 5^3 + 4^0 is not OK since one of the powers is 0.

MAPLE

N:= 10000; # to get all entries <= N

Sums:= proc(L, N)

  option remember;

  local x1, L1;

  x1:= L[1];

  if x1 = 1 then L1:= {1}

  else L1:= {seq(x1^j, j=1..floor(log[x1](N)))};

  fi;

  if nops(L) = 1 then L1

  else select(`<=`, {seq(seq(a+b, a=L1), b=Sums(L[2..-1], N))}, N)

  fi

end proc;

filter:= proc(x, N)

   local L;

   L:= sort(subs(0=NULL, convert(x, base, 10))) ;

   member(x, Sums(L, N));

end proc;

A007532:= select(filter, [$1..N], N); # Robert Israel, Apr 13 2014

MATHEMATICA

Select[Range@1000, (s=#; MemberQ[Total/@(a^#&/@Tuples[Range@If[#==1||#==0, 1, Floor[Log[#, s]]]&/@(a=IntegerDigits[s])]), s])&] (* Giorgos Kalogeropoulos, Aug 18 2021 *)

PROG

(Haskell)

a007532 n = a007532_list !! (n-1)

a007532_list = filter f [1..] where

   f x = g x 0 where

     g 0 v = v == x

     g u v = if d <= 1 then g u' (v + d) else v <= x && h d

             where h p = p <= x && (g u' (v + p) || h (p * d))

                   (u', d) = divMod u 10

-- Reinhard Zumkeller, Jun 02 2013

(Python)

from itertools import count, takewhile

def cands(n, d):

    return takewhile(lambda x: x<=n, (d**i for i in count(1)))

def handsome(s, t):

    if s == "":

        return t == 0

    if s[0] in "01":

        return handsome(s[1:], t - int(s[0]))

    return any(handsome(s[1:], t - p) for p in cands(t, int(s[0])))

def ok(n):

    return n and handsome(str(n), n)

print(list(filter(ok, range(1035)))) # Michael S. Branicky, Aug 18 2021

CROSSREFS

Cf. A001694, A005934, A005188, A003321, A014576, A023052, A046074, A050240 (>= 2 reps.), A050241.

Different from A061862.

Sequence in context: A228187 A134703 A061862 * A349279 A347189 A068189

Adjacent sequences:  A007529 A007530 A007531 * A007533 A007534 A007535

KEYWORD

base,nonn,nice

AUTHOR

N. J. A. Sloane, Robert G. Wilson v

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 21:32 EDT 2022. Contains 357270 sequences. (Running on oeis4.)